分析 (Ⅰ)在平面SAC中,過(guò)點(diǎn)S作SH⊥AD,垂足為H,由面面垂直的性質(zhì)可得AB⊥SH,再由SA⊥平面ABC,得AB⊥SA,結(jié)合線面垂直的判定可得AB⊥平面SAC;
(Ⅱ)不妨設(shè)AC=2,AB=3,AS=6,由(Ⅰ)知,AB⊥平面SAC,得AB⊥AC,分別以AB、AC、AS所在直線為z、y、z軸建立空間直角坐標(biāo)系.求出兩個(gè)平面平面ABD與平面SBD的一個(gè)法向量,由法向量所成角的余弦值可得二面角S-BD-A的余弦值.
解答 (Ⅰ)證明:如圖,在平面SAC中,過(guò)點(diǎn)S作SH⊥AD,垂足為H,
∵平面ABD⊥平面SAC,平面ABD∩平面SAC=AD,
∴SH⊥平面ABD,∴AB⊥SH.
又SA⊥平面ABC,∴AB⊥SA.
∵SA∩SH=S,∴AB⊥平面SAC;
(Ⅱ)解:不妨設(shè)AC=2,AB=3,AS=6,
由(Ⅰ)知,AB⊥平面SAC,∴AB⊥AC,
分別以AB、AC、AS所在直線為z、y、z軸建立空間直角坐標(biāo)系.
則有A(0,0,0),B(3,0,0),C(0,2,0),S(0,0,6),D(0,1,3).
設(shè)平面ABD的一個(gè)法向量$\overrightarrow{{n}_{1}}=({x}_{1},{y}_{1},{z}_{1})$,則$\left\{\begin{array}{l}{\overrightarrow{{n}_{1}}•\overrightarrow{AB}=3{x}_{1}=0}\\{\overrightarrow{{n}_{1}}•\overrightarrow{AD}={y}_{1}+3{z}_{1}=0}\end{array}\right.$,
取z1=1,得$\overrightarrow{{n}_{1}}=(0,-3,1)$.
同理可得平面SBD的一個(gè)法向量$\overrightarrow{{n}_{2}}=(-2,-3,-1)$.
∴cos<$\overrightarrow{{n}_{1}},\overrightarrow{{n}_{2}}$>=$\frac{\overrightarrow{{n}_{1}}•\overrightarrow{{n}_{2}}}{|\overrightarrow{{n}_{1}}||\overrightarrow{{n}_{2}}|}$=$\frac{8}{\sqrt{10}×\sqrt{14}}=\frac{4\sqrt{35}}{35}$.
∴二面角S-BD-A的余弦值為-$\frac{4\sqrt{35}}{35}$.
點(diǎn)評(píng) 本題考查直線與平面垂直的判定,訓(xùn)練了利用空間向量求二面角的平面角,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{{\sqrt{2}}}{5}$ | B. | $\frac{{\sqrt{2}}}{5}$ | C. | $-\frac{{\sqrt{2}}}{10}$ | D. | $\frac{{\sqrt{2}}}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{{e^2}+1}}{2}$ | B. | $\frac{{{e^2}-3}}{2}$ | C. | $\frac{{{e^2}+3}}{2}$ | D. | $\frac{{{e^2}-5}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{4}{9}$ | C. | $\frac{1}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 3 | C. | 6 | D. | 8 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com