下列求導(dǎo)運(yùn)算正確的是( 。
A、(x+
1
x
)′=1+
1
x2
B、(log2x)′=
1
xln2
C、(cosx)′=sinx
D、(xlnx)′=lnx-1
考點:導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)導(dǎo)數(shù)的運(yùn)算法則求導(dǎo),然后再判斷正確答案
解答: 解:∵(x+
1
x
)′=1-
1
x2
,(log2x)′=
1
xln2
,(cosx)′=-sinx,(xlnx)′=x′lnx+x(1nx)′=lnx+1,
故選:B.
點評:本題考查了導(dǎo)數(shù)運(yùn)算法則和求導(dǎo)公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知n階方陣A≠B,矩形C也為n階方陣,則“AC=BC”是“矩陣C中元素都為0”的
 
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-8x+15=0},B={x|x2-ax-b=0},
(1)若A∪B={2,3,5},A∩B={3},求a,b的值;
(2)若ϕ?B?A,求實數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-4x+2,函數(shù)g(x)=(
1
3
f(x)
(1)若f(2-x)=f(2+x),求f(x)的解析式;
(2)若g(x)有最大值9,求a的值,并求出g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)如圖所示的流程圖,則輸出的結(jié)果i為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
OA
=(-2,m),
OB
,=(n,1),
OC
=(5,-1),若點A、B、C在同一條直線上,且m=2n,則m+n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若向量
a
=(2,-3)與向量
b
=(x,6)共線,則實數(shù)x的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x3-3x2+3.
(1)求曲線y=f(x)在點x=1處的切線方程;
(2)若關(guān)于x的方程f(x)+m=0有且只有兩個不同的實根,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

y=
x-1
2x
-log2(4-x2)的定義域是( 。
A、(-2,0)∪(1,2)
B、(-2,0]∪(1,2)
C、(-2,0)∪[1,2)
D、[-2,0]∪[1,2]

查看答案和解析>>

同步練習(xí)冊答案