精英家教網 > 高中數學 > 題目詳情

已知{an}是等差數列,公差d>0,前n項和為Sn且滿足.對于數列{bn},其通項公式,如果數列{bn}也是等差數列.

(1)求非零常數C的值;

(2)試求函數()的最大值.

答案:
解析:

  解:(1)∵為等差數列,∴  1分
  由知a3,a4是方程x2-22x+117=0的兩個根

  又

  ∴a3=9,a4=13  2分

  ∴d=4,a1=1

  ∴=1+(n-1)×4=4n-3  3分

    4分

  

  ∵數列也是等差數列

  ∴2  6分

  解得:或0(舍)

  當滿足題意  7分

  (2)∵

  

  當且僅當時取等號.

  ∴的最大值為  14分


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),數列{an}
滿足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求證:數列{a2k-1}是等差數;數列{a2k}是等比數列;(其中k∈N*);
(II)記an=f(n),對任意的正整數n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設Sn是等差數{an}的前n項和,已知S6=36,Sn=324,若Sn-6=144(n>6),則n等于

A.15                 B.16             C.17                D.18

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),數列{an}
滿足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求證:數列{a2k-1}是等差數;數列{a2k}是等比數列;(其中k∈N*);
(II)記an=f(n),對任意的正整數n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2009-2010學年重慶市南開中學高三(上)期末數學試卷(文科)(解析版) 題型:解答題

已知滿足:
(I)求證:數列{a2k-1}是等差數;數列{a2k}是等比數列;(其中k∈N*);
(II)記an=f(n),對任意的正整數n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

查看答案和解析>>

同步練習冊答案