已知數(shù)列是等差數(shù)列,數(shù)列是等比數(shù)列,則的值為     .

 

解析試題分析:因為是等差數(shù)列,所以;又因為是等比數(shù)列,所以不合題意),故=。
考點:本題主要考查等差數(shù)列、等比數(shù)列的性質(zhì)。
點評:簡單題,等差數(shù)列、等比數(shù)列是高考必考內(nèi)容,本題將二者結合在一起,要注意公式、性質(zhì)所存在的差別。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

把正整數(shù)按一定的規(guī)則排成了如圖所示的三角形數(shù)表.

是位于這個三角形數(shù)表中從上往下數(shù)第行、從左往右數(shù)第個數(shù),如.若,則      

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

如圖所示的數(shù)陣叫“萊布尼茲調(diào)和三角形”,他們是由正整數(shù)的倒數(shù)組成的,第行有個數(shù)且兩端的數(shù)均為,每個數(shù)是它下一行左右相鄰兩數(shù)的和,如:…,則第行第3個數(shù)字是.(用含的式子作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

f(n)=+…+(n∈N*),那么f(n+1)-f(n)等于        .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

等差數(shù)列{an}的首項為a1,公差為d,前n項和為Sn,給出下列四個命題:
①數(shù)列{()an}為等比數(shù)列;
②若,則;
;
④若,則一定有最小值.
其中真命題的序號是__________(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知數(shù)列的通項公式為,則數(shù)列中數(shù)值最大的項是第   

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

 是數(shù)列的前項和,若,則數(shù)列是等差數(shù)列
②若,則
③已知函數(shù),若存在,使得成立,則
④在中,分別是角A、B、C的對邊,若為等腰直角三角形
其中正確的有           (填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知4個命題:
①若等差數(shù)列的前n項和為則三點共線;
②命題:“”的否定是“”;
③若函數(shù)在(0,1)沒有零點,則k的取值范圍是
是定義在R上的奇函數(shù),的解集為(2,2)
其中正確的是     。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某校高一學生1000人,每周一次同時在兩個可容納600人的會議室,開設“音樂欣賞”與“美術鑒賞”的校本課程.要求每個學生都參加,要求第一次聽“音樂欣賞”課的人數(shù)為,其余的人聽“美術鑒賞”課;從第二次起,學生可從兩個課中自由選擇.據(jù)往屆經(jīng)驗,凡是這一次選擇“音樂欣賞”的學生,下一次會有20﹪改選“美術鑒賞”,而選“美術鑒賞”的學生,下次會有30﹪改選“音樂欣賞”,用分別表示在第次選“音樂欣賞”課的人數(shù)和選“美術鑒賞”課的人數(shù).
(1)若,分別求出第二次,第三次選“音樂欣賞”課的人數(shù);
(2)①證明數(shù)列是等比數(shù)列,并用表示;
②若要求前十次參加“音樂欣賞”課的學生的總人次不超過5800,求的取值范圍.

查看答案和解析>>

同步練習冊答案