解:(1)由函數(shù)f(x)的圖象關于原點對稱可知函數(shù)為奇函數(shù)
∴f(0)=0,n=6
f(-x)=-f(x)對任意的x都成立可得f(-1)=-f(1)
∴m=4
(2)由(1)可得f(x)=x
3-12x
(法一)設-2≤x
1<x
2≤2
則f(x
1)-f(x
2)=x
13-12x
1-x
23+12x
2=(x
1-x
2)(x
12+x
1x
2+x
22)-12(x
1-x
2)
=(x
1-x
2)(x
12+x
1x
2+x
22-12)
∵-2≤x
1<x
2≤2
∴x
1-x
2<0,x
12+x
1x
2+x
22-12<0
∴f(x
1)-f(x
2)<0
即f(x
1)<f(x
2)
∴函數(shù)f(x)在[-2,2]上單調(diào)遞減
(法二):∵f′(x)=3x
2-12=3(x
2-4)≤0
∴函數(shù)f(x)在[-2,2]上單調(diào)遞減
(3)由(2)可知函數(shù)f(x)在[-2,2]上單調(diào)遞減
∴f(x)
min=f(2)=-16,f(x)
max=f(-2)=16
∵x∈[-2,2]時,不等式f(x)≥(n-log
ma)•log
ma恒成立,
:(1)由函數(shù)f(x)的圖象關于原點對稱可知函數(shù)為奇函數(shù)
∴f(0)=0,n=6
f(-x)=-f(x)對任意的x都成立可得f(-1)=-f(1)
∴m=4
(2)由(1)可得f(x)=x
3-12x
(法一)設-2≤x
1<x
2≤2
則f(x
1)-f(x
2)=x
13-12x
1-x
23+12x
2=(x
1-x
2)(x
12+x
1x
2+x
22)-12(x
1-x
2)
=(x
1-x
2)(x
12+x
1x
2+x
22-12)
∵-2≤x
1<x
2≤2
∴x
1-x
2<0,x
12+x
1x
2+x
22-12<0
∴f(x
1)-f(x
2)<0
即f(x
1)<f(x
2)
∴函數(shù)f(x)在[-2,2]上單調(diào)遞減
(法二):∵f′(x)=3x
2-12=3(x
2-4)≤0
∴函數(shù)f(x)在[-2,2]上單調(diào)遞減
(3)由(2)可知函數(shù)f(x)在[-2,2]上單調(diào)遞減
∴f(x)
min=f(2)=-16,f(x)
max=f(-2)=16
∵x∈[-2,2]時,不等式f(x)≥(n-log
ma)•log
ma恒成立,
∴-16≥(6-log
4a)•log
a4
∴l(xiāng)og
a4≥8或log
a4≤-2
∴
或
分析:(1)由函數(shù)f(x)的圖象關于原點對稱可知函數(shù)為奇函數(shù),則可得f(0)=0 可求n,由f(-1)=-f(1)可求m
(2)由(1)可得f(x)=x
3-12x
(法一)設-2≤x
1<x
2≤2,利用函數(shù)單調(diào)性的定義,作差比較f(x
1),f(x
2)的大小即可判定
(法二)對函數(shù)求導f′(x)=3x
2-12=3(x
2-4),判定導數(shù)在[-2,2]上的符號即可判定函數(shù)的單調(diào)性
(3)由(2)可知函數(shù)f(x)在[-2,2]上單調(diào)遞減可知f(x)
min=f(2)=-16,由x∈[-2,2]時,不等式f(x)≥(n-log
ma)•log
ma恒成立,只要-16≥(6-log
4a)•log
a4,可求a
點評:本題主要考查了奇函數(shù)的性質(zhì)的應用,函數(shù)的單調(diào)性的定義法及利用導數(shù)方法的判定,及函數(shù)恒成立與函數(shù)最值求解的相互轉化,屬于函數(shù)知識的綜合應用.