【題目】某理財(cái)公司有兩種理財(cái)產(chǎn)品A和B,這兩種理財(cái)產(chǎn)品一年后盈虧的情況如下(每種理財(cái)產(chǎn)品的不同投資結(jié)果之間相互獨(dú)立):
產(chǎn)品A
投資結(jié)果 | 獲利40% | 不賠不賺 | 虧損20% |
概率 |
產(chǎn)品B
投資結(jié)果 | 獲利20% | 不賠不賺 | 虧損10% |
概率 | p | q |
注:p>0,q>0
(1)已知甲、乙兩人分別選擇了產(chǎn)品A和產(chǎn)品B投資,如果一年后他們中至少有一人獲利的概率大于,求實(shí)數(shù)p的取值范圍;
(2)若丙要將家中閑置的10萬元人民幣進(jìn)行投資,以一年后投資收益的期望值為決策依據(jù),則選用哪種產(chǎn)品投資較理想?
【答案】(1);
(2)當(dāng)時(shí),E(X)=E(Y),選擇產(chǎn)品A和產(chǎn)品B一年后投資收益的數(shù)學(xué)期望相同,可以在產(chǎn)品A和產(chǎn)品B中任選一個(gè);
當(dāng)時(shí),E(X)>E(Y),選擇產(chǎn)品A一年后投資收益的數(shù)學(xué)期望較大,應(yīng)選產(chǎn)品A;
當(dāng)時(shí),E(X)<E(Y),選擇產(chǎn)品B一年后投資收益的數(shù)學(xué)期望較大,應(yīng)選產(chǎn)品B.
【解析】
(1)先表示出兩人全都不獲利的概率,再求至少有一人獲利的概率,列出不等式求解;
(2)分別求出兩種產(chǎn)品的期望值,對(duì)期望中的參數(shù)進(jìn)行分類討論,得出三種情況.
(1)記事件A為“甲選擇產(chǎn)品A且盈利”,事件B為“乙選擇產(chǎn)品B且盈利”,事件C為“一年后甲,乙兩人中至少有一人投資獲利”,則,.
所以,解得.
又因?yàn)?/span>,q>0,所以.
所以.
(2)假設(shè)丙選擇產(chǎn)品A進(jìn)行投資,且記X為獲利金額(單位:萬元),則隨機(jī)變量X的分布列為
X | 4 | 0 | -2 |
p |
則.
假設(shè)丙選擇產(chǎn)品B進(jìn)行投資,且記Y為獲利金額(單位:萬元),則隨機(jī)變量Y的分布列為
Y | 2 | 0 | -1 |
p | p | q |
則.
討論:
當(dāng)時(shí),E(X)=E(Y),選擇產(chǎn)品A和產(chǎn)品B一年后投資收益的數(shù)學(xué)期望相同,可以在產(chǎn)品A和產(chǎn)品B中任選一個(gè);
當(dāng)時(shí),E(X)>E(Y),選擇產(chǎn)品A一年后投資收益的數(shù)學(xué)期望較大,應(yīng)選產(chǎn)品A;
當(dāng)時(shí),E(X)<E(Y),選擇產(chǎn)品B一年后投資收益的數(shù)學(xué)期望較大,應(yīng)選產(chǎn)品B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中.
(1)求過點(diǎn)和函數(shù)的圖像相切的直線方程;
(2)若對(duì)任意,有恒成立,求的取值范圍;
(3)若存在唯一的整數(shù),使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是直角梯形, , ,
,點(diǎn)在線段上,且, , 平面.
(1)求證:平面平面;
(2)當(dāng)四棱錐的體積最大時(shí),求四棱錐的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減;如圖,四邊形中,,,為的內(nèi)角的對(duì)邊,
且滿足.
(Ⅰ)證明:;
(Ⅱ)若,設(shè),,
,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(x﹣1)(a>0,且a≠1).
(1)若f(x)在[2,9]上的最大值與最小值之差為3,求a的值;
(2)若a>1,求不等式f(2x)>0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過坐標(biāo)原點(diǎn)的直線l與圓C:x2+y2﹣8x+12=0相交于不同的兩點(diǎn)A,B.
(1)求線段AB的中點(diǎn)P的軌跡M的方程.
(2)是否存在實(shí)數(shù)k,使得直線l1:y=k(x﹣5)與曲線M有且僅有一個(gè)交點(diǎn)?若存在,求出k的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個(gè)幾何體的平面展開圖,其中四邊形為正方形,,,,為全等的等邊三角形,、分別為、的中點(diǎn),在此幾何體中,下列結(jié)論中正確的個(gè)數(shù)有()
①平面平面
②直線與直線是異面直線
③直線與直線共面
④面與面的交線與平行
A. 3B. 2C. 1D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)將100名高一新生分成水平相同的甲、乙兩個(gè)平行班,每班50人,某教師采用、兩種不同的教學(xué)模式分別在甲、乙兩個(gè)班進(jìn)行教改實(shí)驗(yàn),為了了解教學(xué)效果,期末考試后,該教師分別從兩班中各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計(jì),作出莖葉圖如圖所示,記成績不低于90分為“成績優(yōu)秀”.
(1)在乙班的20個(gè)個(gè)體中,從不低于86分的成績中隨機(jī)抽取2人,求抽出的兩個(gè)人均“成績優(yōu)秀”的概率;
(2)由以上統(tǒng)計(jì)數(shù)據(jù)填寫列聯(lián)表;能否在犯錯(cuò)誤的概率不超過0.10的前提下認(rèn)為成績優(yōu)秀與教學(xué)模型有關(guān).
甲班() | 乙班() | 總計(jì) | |
成績優(yōu)秀 | |||
成績不優(yōu)秀 | |||
總計(jì) |
附:.
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.847 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)時(shí),求的極值;
(2)當(dāng)時(shí),若函數(shù)恰有兩個(gè)不同的零點(diǎn),求的值;
(3)當(dāng)時(shí),若的解集為 ,且 中有且僅有一個(gè)整數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com