已知f(x)=
2
3
x(x2-3ax-
9
2
)(a∈R)

(I)若過函數(shù)f(x)圖象上一點(diǎn)P(1,t)的切線與直線x-2y+b=0垂直,求t的值;
(II)若函數(shù)f(x)在(-1,1)內(nèi)是減函數(shù),求a的取值范圍.
(1)∵f(x)=
2
3
x3-2ax2-3x
,∴f'(x)=2x2-4ax-3.
則過P(1,t)的切線斜率為k=f′(1)=-1-4a.(2分)
又∵它與直線x-2y+b=0垂直,∴-1-4a=-2,即a=
1
4
,.(4分)
f(x)=
2
3
x3-
1
2
x2-3x
又∵P(1,t)在f(x)的圖象上,∴t=-
17
6
(6分)
(2)∵函數(shù)f(x)在(-1,1)內(nèi)是減函數(shù)
∴f'(x)=2x2-4ax-3≤0對(duì)于一切x∈(-1,1)恒成立.(8分)
∵二次函數(shù)f'(x)的圖象開口向上,
f′(-1)=2+4a-3≤0
f(1)=2-4a-3≤0
(10分)
-
1
4
≤a≤
1
4
(12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
px2+2
3x+q
是奇函數(shù),且f(2)=
5
3

(1)求實(shí)數(shù)p和q的值.
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
2
3
x(x2-3ax-
9
2
)(a∈R)

(I)若過函數(shù)f(x)圖象上一點(diǎn)P(1,t)的切線與直線x-2y+b=0垂直,求t的值;
(II)若函數(shù)f(x)在(-1,1)內(nèi)是減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知f(x)=
23x-1
+m
是奇函數(shù),求常數(shù)m的值;
(2)畫出函數(shù)y=|3x-1|的圖象,并利用圖象回答:k為何值時(shí),方程|3X-1|=k無(wú)解?有一解?有兩解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)已知f(x)=
2
3x-1
+m
是奇函數(shù),求常數(shù)m的值;
(2)畫出函數(shù)y=|3x-1|的圖象,并利用圖象回答:k為何值時(shí),方程|3X-1|=k無(wú)解?有一解?有兩解?

查看答案和解析>>

同步練習(xí)冊(cè)答案