16.設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,已知a1+a3+a11=6,則S9=18.

分析 由已知求得a5,再由等差數(shù)列的前n項(xiàng)和得答案.

解答 解:在等差數(shù)列{an}中,由a1+a3+a11=6,
得a1+a1+2d+a1+10d=6,即a1+4d=a5=2,
則${S}_{9}=\frac{({a}_{1}+{a}_{9})×9}{2}=9{a}_{5}=9×2=18$.
故答案為:18.

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式,考查了等差數(shù)列的前n項(xiàng)和,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知tanα=-2,則sinαcosα-cos2α的值是( 。
A.$\frac{3}{5}$B.$\frac{5}{3}$C.-$\frac{5}{3}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知cosα=$\frac{3}{5}$,cos(α+β)=-$\frac{12}{13}$,α∈(0,$\frac{π}{2}$),α+β∈($\frac{π}{2}$,π),則cosβ=-$\frac{16}{65}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)實(shí)數(shù)a,b,則“|a-b2|+|b-a2|≤1”是“(a-$\frac{1}{2}}$)2+(b-$\frac{1}{2}}$)2≤$\frac{3}{2}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知θ為象限角且cot(sinθ)>0則θ是第一、二象限的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.從某廠生產(chǎn)的802輛轎車中抽取80輛測(cè)試某種性能,若先用簡(jiǎn)單隨機(jī)抽樣從802轎車中剔除2輛,剩下的800輛再按系統(tǒng)抽樣方法進(jìn)行,則每輛轎車被抽到的概率是( 。
A.不全相等B.均不相等
C.都相等,且為$\frac{1}{10}$D.都相等,且為$\frac{40}{401}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知:數(shù)列{an}中,$\frac{{a}_{n+1}+{a}_{n}-1}{{a}_{n+1}-{a}_{n}+1}$=n,a2=6,n∈N+
(1)求a1,a3,a4;
(2)猜想an的表達(dá)式并給出證明;
(3)記:Sn=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$,證明:Sn<$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC內(nèi)角A,B,C的對(duì)邊分別是a,b,c,已知b=acosC+csinA,cosB=$\frac{4}{5}$.
(I) 求cosC的值;
(Ⅱ)若BC=10,D為AB的中點(diǎn),求CD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知圓內(nèi)接△ABC中,D為BC上一點(diǎn),且△ADC為正三角形,點(diǎn)E為BC的延長(zhǎng)線上一點(diǎn),AE為圓O的切線,則∠BAE的度數(shù)為120°.

查看答案和解析>>

同步練習(xí)冊(cè)答案