3.8416.635">

【題目】北京時間3月15日下午,谷歌圍棋人工智能與韓國棋手李世石進(jìn)行最后一輪較量, 獲得本場比賽勝利,最終人機(jī)大戰(zhàn)總比分定格.人機(jī)大戰(zhàn)也引發(fā)全民對圍棋的關(guān)注,某學(xué)校社團(tuán)為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時間的頻率分布直方圖(如圖所示),將日均學(xué)習(xí)圍棋時間不低于40分鐘的學(xué)生稱為“圍棋迷”.

(Ⅰ)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有的把握認(rèn)為“圍棋迷”與性別有關(guān)?

非圍棋迷

圍棋迷

合計

10

55

合計

(Ⅱ)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量學(xué)生中,采用隨機(jī)抽樣方法每次抽取1名學(xué)生,抽取3次,記被抽取的3名淡定生中的“圍棋迷”人數(shù)為。若每次抽取的結(jié)果是相互獨立的,求的平均值和方差.

附: ,其中.

td style="width:124.95pt; border-top-style:solid; border-top-width:0.75pt; border-right-style:solid; border-right-width:0.75pt; border-left-style:solid; border-left-width:0.75pt; padding:3.38pt 5.03pt; vertical-align:middle">

3.841

0.05

0.01

6.635

【答案】(1) 沒有理由認(rèn)為“圍棋迷”與性別有關(guān)(2) .

【解析】試題分析:(1)在頻率分布直方圖中,求出抽取的100人中,“圍棋迷”有人,填寫列聯(lián)表,計算觀測值,比較臨界值即可得出結(jié)論;(2)由頻率直方圖計算頻率,將頻率視為概率,得出,計算對應(yīng)的概率,寫出的分布列,算出期望和方差。

試題解析:(Ⅰ)由頻率分布直方圖可知,在抽取的100人中,“圍棋迷”有25人,從而列聯(lián)表如下

非圍棋迷

圍棋迷

合計

30

15

45

45

10

55

合計

75

25

100

列聯(lián)表中的數(shù)據(jù)代入公式計算,得

因為,所以沒有理由認(rèn)為“圍棋迷”與性別有關(guān).

(Ⅱ)由頻率分布直方圖知抽到“圍棋迷”的頻率為0.25,將頻率視為概率,即從觀眾中抽取一名“圍棋迷”的概率為.由題意,從而的分布列為

0

1

2

3

. .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:Cx=若不建隔熱層,每年能源消耗費用為8萬元。設(shè)fx)為隔熱層建造費用與20年的能源消耗費用之和。

)求k的值及f(x)的表達(dá)式。

)隔熱層修建多厚時,總費用f(x)達(dá)到最小,并求最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),等腰直角三角形的底邊,點在線段上,,現(xiàn)將沿折起到的位置(如圖(2))

(1)求證:;

(2),直線與平面所成的角為,求長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對稱軸為坐標(biāo)軸的橢圓的焦點為,上.

(1)求橢圓的方程;

(2)設(shè)不過原點的直線與橢圓交于,兩點,且直線,,的斜率依次成等比數(shù)列,則當(dāng)的面積為時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論的單調(diào)性并求極值;

(Ⅱ)若點在函數(shù)上,當(dāng),且時,證明: 是自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知知矩形中,點是邊上的點, 相交于點,且,現(xiàn)將沿折起,如圖2,點的位置記為,此時.

(1)求證:

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)在區(qū)間上的值域

(2)把函數(shù)圖象所有點的上橫坐標(biāo)縮短為原來的倍,再把所得的圖象向左平移個單位長度,再把所得的圖象向下平移1個單位長度,得到函數(shù) 若函數(shù)關(guān)于點對稱

i)求函數(shù)的解析式;

ii)求函數(shù)單調(diào)遞增區(qū)間及對稱軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面四邊形ABCD為菱形,平面ABCD,,,EBC的中點.

求證:平面PAD;

求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間和極值;

(2)若有兩個零點,求實數(shù)的范圍.

查看答案和解析>>

同步練習(xí)冊答案