證明:
sin3α
sinα+cosα
+
cos2α
1+tanα
=1-sinαcosα.
考點(diǎn):三角函數(shù)恒等式的證明
專題:三角函數(shù)的求值
分析:通過切化弦通分,利用立方差公式化簡證明即可.
解答: 證明:
sin3α
sinα+cosα
+
cos2α
1+tanα
=
sin3α
sinα+cosα
+
cos2α
1+
sinα
cosα
=
sin3α+cos2α
sinα+cosα

=
(sinα+cosα)(sin2α-sinα•cosα+cos2α)
sinα+cosα

=1-sinαcosα.
所以等式成立.
點(diǎn)評(píng):本題考查三角函數(shù)恒等式的證明,切化弦以及立方差公式的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用符號(hào)∈或∉填空:
(1)-2
 
{-2,2};
(2)(2,0)
 
{(x,y)|y=x2-3x+2};
(3)0
 
N*,
2
 
Q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=2px焦點(diǎn)F的直線交拋物線于A,B兩點(diǎn),過B點(diǎn)作其準(zhǔn)線的垂線,垂足為D,設(shè)O為坐標(biāo)原點(diǎn),問,是否存在實(shí)數(shù)向量
AO
OD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f(
x1
x2
)=f(x1)-f(x2),且當(dāng)x>1時(shí),f(x)>0,求f(1),并判斷f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)A是橢圓
x2
3b2
+
y2
b2
=1(b>0)的右頂點(diǎn),點(diǎn)C(t,t)(t>0)在橢圓上,且滿足
OC
OA
=
3
2
(其中O為坐標(biāo)原點(diǎn))
(Ⅰ)求橢圓的方程
(Ⅱ)若直線l與橢圓交于兩點(diǎn)M,N,當(dāng)
OM
+
ON
=
2
OC
,求△OMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足2bcosC+c=2a
(Ⅰ)求B;
(Ⅱ)若a=2,且sin(2A+
π
6
)+cos2A=
3
2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正n邊形的兩條對(duì)角線都與直線l垂直,則直線l一定垂直于這個(gè)正n邊形所在的平面,則n的取值可能是( 。
A、8B、7C、6D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(1-2x)7=a0+a1x+a2x2+…+a7x7,求:
(1)a1+a2+…+a7
(2)|a0|+|a1|+…+|a7|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,若直線l的極坐標(biāo)系,若直線l的極坐標(biāo)方程為ρcosθ=1,圓C的參數(shù)方程為:
x=2+2cosφ
y=2sinφ
(φ為參數(shù)),則圓心C到直線l的距離等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案