分析 根據(jù)有向距離的定義,及點(diǎn)P(x0,y0)與Ax1+By1+C的符號(hào),分別對(duì)直線P1P2與直線l的位置關(guān)系進(jìn)行判斷.
解答 解:對(duì)于①,若d1-d2=0,則若d1=d2,∴Ax1+By1+C=Ax2+By2+C,
∴若d1=d2=0時(shí),即Ax1+By1+C=Ax2+By2+C=0,
則點(diǎn)P1,P2都在直線l,∴此時(shí)直線P1P2與直線l重合,∴①錯(cuò)誤.
對(duì)于②,由①知,若d1=d2=0時(shí),滿足d1+d2=0,
但此時(shí)Ax1+By1+C=Ax2+By2+C=0,
則點(diǎn)P1,P2都在直線l,∴此時(shí)直線P1P2與直線l重合,∴②錯(cuò)誤.
對(duì)于③,若d1•d2>0,即(Ax1+By1+C)(Ax2+By2+C)>0,
∴點(diǎn)P1,P2分別位于直線l的同側(cè),∴直線P1P2與直線l相交或平行,∴③正確;
對(duì)于④,若d1•d2<0,即(Ax1+By1+C)(Ax2+By2+C)<0,
∴點(diǎn)P1,P2分別位于直線l的兩側(cè),∴直線P1P2與直線l相交,∴④正確.
故答案為:③④.
點(diǎn)評(píng) 本題主要考查與直線距離有關(guān)的命題的判斷,利用條件推出點(diǎn)與直線的位置關(guān)系是解決本題的關(guān)鍵.綜合性較強(qiáng),屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m>0,n>0 | B. | m<0,n>0 | C. | m>0,n<0 | D. | m<0,n<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{a^3}{6}$ | B. | $\frac{a^3}{12}$ | C. | $\frac{{\sqrt{3}{a^3}}}{12}$ | D. | $\frac{{\sqrt{2}{a^3}}}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{100}+\frac{y^2}{96}=1$ | B. | $\frac{x^2}{25}+\frac{y^2}{21}=1$ | C. | $\frac{x^2}{96}+\frac{y^2}{100}=1$ | D. | $\frac{x^2}{21}+\frac{y^2}{25}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a∥b,a∥α,則b∥α | B. | 若a⊥b,a⊥α,則b⊥α | ||
C. | 若a∥α,a∥β,α∩β=b,則a∥b | D. | 若a∥α,α⊥β,則a⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{{π^2}+4}$ | B. | π | C. | 2 | D. | $\sqrt{{π^2}+1}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com