精英家教網 > 高中數學 > 題目詳情
設數列的前項和為,且方程有一個根為,
(1)證明:數列是等差數列;
(2)設方程的另一個根為,數列的前項和為,求的值;
(3)是否存在不同的正整數,使得,,成等比數列,若存在,求出滿足條件的,若不存在,請說明理由.
(1)利用等差數列的定義證明即可,(2),(3)存在不同的正整數,使得,成等比數列

試題分析:(1)∵是方程的根,

時,,∴,
解得,∴                       2分
時,,∴
化簡得,∴,∴
,又                  5分
∴數列是以為首項,為公差的等差數列         6分
(2)由(1)得,
,帶入方程得,,∴,
∴原方程為,∴,∴     8分
                ①
          ②
① — ②得
   11分
,∴                          12分
(3)由(1)得,,假設存在不同的正整數,使得,成等比數列,則
,∵               14分
,化簡得,
,又∵,且
,∴                   16分
∴存在不同的正整數,使得,,成等比數列
點評:數列的通項公式及應用是數列的重點內容,數列的大題對邏輯推理能力有較高的要求,在數列中突出考查學生的理性思維,這是近幾年新課標高考對數列考查的一個亮點,也是一種趨勢.隨著新課標實施的深入,高考關注的重點為等差、等比數列的通項公式,錯位相減法、裂項相消法等求數列的前n項的和等等
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知公差大于零的等差數列,前項和為. 且滿足.
(Ⅰ)求數列的通項公式;

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知數列的前n項和為=1,且
(1)求,的值,并求數列的通項公式;
(2)解不等式

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

等差數列,的前項和分別為,,若,則使為整數的正整數n的取值個數是(    )
A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知為等差數列,且
(1)求數列的第二項
(2)若成等比數列,求數列的通項.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)設正項數列的前項和,且滿足.
(Ⅰ)計算的值,猜想的通項公式,并證明你的結論;
(Ⅱ)設是數列的前項和,證明:.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知,則的等差中項為( )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

等差數列中,已知,,則是(   )
A.48B.49C.50D.51

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設數列{}是等差數列,時,若自然數滿足,使得成等比數列,(1)求數列{}的通項公式;(2)求數列的通項公式及其前n項的和

查看答案和解析>>

同步練習冊答案