已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為,右頂點為,設點.
(1)求該橢圓的標準方程;
(2)若是橢圓上的動點,求線段中點的軌跡方程;
(1) (2)

試題分析:解:(1)由已知得橢圓的半長軸a=2,半焦距c=,則半短軸b=1,
又橢圓的焦點在x軸上, ∴橢圓的標準方程為。
(2)設線段PA的中點為M(x,y) ,點P的坐標是(x0,y0),
   得
由點P在橢圓上,得
∴線段PA中點M的軌跡方程是。
點評:主要是考查了橢圓方程以及軌跡方程的求解,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知、分別是橢圓: 的左、右焦點,點在直線上,線段的垂直平分線經過點.直線與橢圓交于不同的兩點、,且橢圓上存在點,使,其中是坐標原點,是實數(shù).
(Ⅰ)求的取值范圍;
(Ⅱ)當取何值時,的面積最大?最大面積等于多少?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓的左焦點為F, 離心率為, 過點F且與x軸垂直的直線被橢圓截得的線段長為.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設A, B分別為橢圓的左右頂點, 過點F且斜率為k的直線與橢圓交于C, D兩點. 若, 求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的焦點為,點在橢圓上,且線段的中點恰好在軸上,,則            .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的焦距是2,則=(    )
A.5B.3C.5或3D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在軸上,離心率為,它的一個頂點恰好是拋物線的焦點.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的直線與橢圓相切,直線軸交于點,當為何值時的面積有最小值?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓的離心率,其中一個頂點坐標為,則橢圓的方程為                      .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知曲線上任意一點到兩個定點,的距離之和為4.
(1)求曲線的方程;
(2)設過(0,-2)的直線與曲線交于兩點,且為原點),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

若橢圓的離心率為,焦點在軸上,且長軸長為10,曲線上的點與橢圓的兩個焦點的距離之差的絕對值等于4.
(1)求橢圓的標準方程;
(2)求曲線的方程。

查看答案和解析>>

同步練習冊答案