【題目】已知數(shù)列的首項(xiàng)為,前項(xiàng)和為之間滿足 ,

(Ⅰ)求證:數(shù)列是等差數(shù)列;

(Ⅱ)求數(shù)列的通項(xiàng)公式;

設(shè)存在正整數(shù),使對(duì)一切都成立,求的最大值.

【答案】(Ⅰ)見解析.(Ⅱ) (Ⅲ).

【解析】試題分析:Ⅰ)數(shù)列{an}的前n項(xiàng)和Snan之間滿足an= ,化為 ,即可證明.(Ⅱ)由(Ⅰ)知, , 所以 ,n≥2時(shí),an=Sn-Sn-1;n=1時(shí),a1=1.可得數(shù)列的通項(xiàng)公式;(Ⅲ)原不等式等價(jià)于對(duì)一切都成立,即,令,于是, ,即,所以上單調(diào)遞增,故,即可解得正整數(shù)的最大值.

試題解析:

(Ⅰ)因?yàn)?/span>

,

所以

由題, ,兩邊同時(shí)除以,得

,

故數(shù)列是公差為的等差數(shù)列.

(Ⅱ)由(Ⅰ)知, ,

所以

,

,不滿足上式,

.

(Ⅲ)原不等式等價(jià)于對(duì)一切都成立,

,

,

于是, ,即,

所以上單調(diào)遞增,故,

因?yàn)?/span>為正整數(shù),所以的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)命題:

①樣本方差反映的是所有樣本數(shù)據(jù)與樣本平均值的偏離程度;

②基本事件空間是Ω={1,2,3,4,5,6},若事件A={1,3},B={3,5,6},A,B為互斥事件,但不是對(duì)立事件;

③某校高三(1)班和高三(2)班的人數(shù)分別是m,n,若一?荚嚁(shù)學(xué)平均分分別是a,b,則這兩個(gè)班的數(shù)學(xué)平均分為

④如果平面外的一條直線上有兩個(gè)點(diǎn)到這個(gè)平面的距離相等,那么這條直線與這個(gè)平面的位置關(guān)系為平行或相交。

其中真命題的序號(hào)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某幾何體的三視圖.

(1)求該幾何體外接球的體積;

(2)求該幾何體內(nèi)切球的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱臺(tái)ABC﹣A1B1C1中,平面BB1C1C⊥平面ABC,∠ACB=90°,BB1=CC1=B1C1=2,BC=4,AC=6
(1)求證:BC1⊥平面AA1C1C
(2)點(diǎn)D是B1C1的中點(diǎn),求二面角A1﹣BD﹣B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,,,DB平分,為的中點(diǎn),

(1)證明: ;

(2)證明:;

(3)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,且點(diǎn)在橢圓.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過(guò)橢圓上異于其頂點(diǎn)的任意一點(diǎn)作圓的兩條切線,切點(diǎn)分別為不在坐標(biāo)軸上),若直線, 軸上的截距分別為,證明: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠在政府的幫扶下,準(zhǔn)備轉(zhuǎn)型生產(chǎn)一種特殊機(jī)器,生產(chǎn)需要投入固定成本萬(wàn)元,生產(chǎn)與銷售均已百臺(tái)計(jì)數(shù),且每生產(chǎn)臺(tái),還需增加可變成本萬(wàn)元,若市場(chǎng)對(duì)該產(chǎn)品的年需求量為臺(tái),每生產(chǎn)百臺(tái)的實(shí)際銷售收入近似滿足函數(shù)

)試寫出第一年的銷售利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(單位:百臺(tái),,)的函數(shù)關(guān)系式:(說(shuō)明:銷售利潤(rùn)=實(shí)際銷售收入-成本)

)因技術(shù)等原因,第一年的年生產(chǎn)量不能超過(guò)臺(tái),若第一年的年支出費(fèi)用(萬(wàn)元)與年產(chǎn)量(百臺(tái))的關(guān)系滿足,問(wèn)年產(chǎn)量為多少百臺(tái)時(shí),工廠所得純利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:集合,其中

,稱的第個(gè)坐標(biāo)分量.若,且滿足如下兩條性質(zhì):

中元素個(gè)數(shù)不少于個(gè).

,,,存在,使得,的第個(gè)坐標(biāo)分量都是.則稱的一個(gè)好子集.

)若的一個(gè)好子集,且,寫出,

)若的一個(gè)好子集,求證:中元素個(gè)數(shù)不超過(guò)

)若的一個(gè)好子集且中恰好有個(gè)元素,求證:一定存在唯一一個(gè),使得中所有元素的第個(gè)坐標(biāo)分量都是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某校參加高二年級(jí)學(xué)業(yè)水平考試模擬考試的學(xué)生中抽取60名學(xué)生,將其數(shù)學(xué)成績(jī)分成6段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]后,畫出如圖的頻率分布直方圖.根據(jù)圖形信息,解答下列問(wèn)題:

(1)估計(jì)這次考試成績(jī)的眾數(shù),中位數(shù),平均數(shù);

(2)估計(jì)這次考試成績(jī)的及格率(60分及其以上為及格).

查看答案和解析>>

同步練習(xí)冊(cè)答案