16.在平面直角坐標(biāo)系xOy中,已知△ABC的頂點(diǎn)A(5,1),B(1,5).
(1)若A為直角△ABC的直角頂點(diǎn),且頂點(diǎn)C在y軸上,求BC邊所在直線方程;
(2)若等腰△ABC的底邊為BC,且C為直線l:y=2x+3上一點(diǎn),求點(diǎn)C的坐標(biāo).

分析 (1)利用斜率關(guān)系建立方程,求出C的坐標(biāo),即可求BC邊所在直線方程;
(2)利用距離關(guān)系建立方程,即可求點(diǎn)C的坐標(biāo).

解答 解:(1)設(shè)C(0,y),則$\frac{1-y}{5}•\frac{5-1}{1-5}$=-1,∴y=-4,
∴BC邊所在直線方程$\frac{y-5}{-4-5}=\frac{x-1}{0-1}$,即9x-y-4=0;
(2)設(shè)C(a,2a+3),則
∵等腰△ABC的底邊為BC,
∴(5-1)2+(1-5)2=(a-5)2+(2a+2)2,
∴5a2-2a-3=0,
∴a=1或-$\frac{3}{5}$,
∴C(1,5)或(-$\frac{3}{5}$,$\frac{9}{5}$).

點(diǎn)評(píng) 本題考查直線方程,考查斜率公式的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若函數(shù)f(x)=ex-k在區(qū)間(0,1)內(nèi)存在零點(diǎn),則參數(shù)k的取值范圍是(1,e).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)f(θ)=$\frac{2co{s}^{3}θ+si{n}^{2}(2π-θ)+sin(\frac{π}{2}+θ)-3}{2+2si{n}^{2}(\frac{3π}{2}+θ)+cos(-θ)}$,求f($\frac{2π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=($\frac{1}{3}$)x+$\frac{1}{\sqrt{x+3}}$-3的零點(diǎn)所在區(qū)間是( 。
A.(1,2)B.(0,1)C.(-1,0)D.(-2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{{x}^{2}-1},x<3}\\{2{x}^{-\frac{1}{2}},x≥3}\end{array}\right.$,則f(f($\frac{\sqrt{5}}{2}$))=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若函數(shù)y=f(x)的定義域?yàn)閇1,5],則函數(shù)y=f(2x-1)+(2x+1)的定義域[1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知全集U=R,集合M={x|x2+2x-3≥0},N={x|log2x≤1},則(∁UM)∪N=(  )
A.{x|-1≤x≤2}B.{x|-1≤x≤3}C.{x|-3<x≤2}D.{x|0<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在平面直角坐標(biāo)系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,左頂點(diǎn)為A(-2,0),過點(diǎn)A作斜率為k(k≠0)的直線l交橢圓C于點(diǎn)D,交y軸于點(diǎn)E.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知點(diǎn)P為AD的中點(diǎn),是否存在頂點(diǎn)Q,對(duì)于任意的k(k≠0)都有OP⊥EQ?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知冪函數(shù)y=f(x)的圖象過點(diǎn)($\sqrt{2}$,2$\sqrt{2}$),且f(m-2)>1,則m的取值范圍是(  )
A.m<1或m>3B.1<m<3C.m<3D.m>3

查看答案和解析>>

同步練習(xí)冊(cè)答案