【題目】已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;

(2)對(duì)于任意的,的圖象恒在圖象的上方,求實(shí)數(shù)a的取值菹圍.

【答案】(1);(2)

【解析】

(1)求出的值可得切點(diǎn)坐標(biāo),求出的值,可得切線斜率,利用點(diǎn)斜式可得曲線在點(diǎn)處的切線方程;(2)由題意得恒成立,,則需求出函數(shù)的最小值即可,但由于的零點(diǎn)不易求出,故通過(guò)再次求導(dǎo)的方法逐步求解,進(jìn)而求得的最小值

(1)當(dāng)時(shí),,

,

,

,

函數(shù)在點(diǎn)處的切線方程為,

(2)由題知當(dāng)時(shí),恒成立,

即當(dāng)時(shí),恒成立,

等價(jià)于恒成立

,

,

,

上單調(diào)遞增,

存在唯一零點(diǎn)

使得

且當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增

,

,

設(shè),,

單調(diào)遞增.

,

,

,

故實(shí)數(shù)的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD和矩形ABEF中,,,矩形ABEF可沿AB任意翻折.

1)求證:當(dāng)點(diǎn)F,A,D不共線時(shí),線段MN總平行于平面ADF.

2)“不管怎樣翻折矩形ABEF,線段MN總與線段FD平行”這個(gè)結(jié)論正確嗎?如果正確,請(qǐng)證明;如果不正確,請(qǐng)說(shuō)明能否改變個(gè)別已知條件使上述結(jié)論成立,并給出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正四面體的各棱長(zhǎng)均為2,、、分別為棱、的中點(diǎn),以為圓心、1為半徑,分別在面、面內(nèi)作弧,并將兩弧各分成五等份,分點(diǎn)順次為、、、、以及、、、、.一只甲蟲(chóng)欲從點(diǎn)出發(fā),沿四面體表面爬行至點(diǎn),則其爬行的最短距離為___________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公園內(nèi)有一塊以為圓心半徑為米的圓形區(qū)域.為豐富市民的業(yè)余文化生活,現(xiàn)提出如下設(shè)計(jì)方案:如圖,在圓形區(qū)域內(nèi)搭建露天舞臺(tái),舞臺(tái)為扇形區(qū)域,其中兩個(gè)端點(diǎn),分別在圓周上;觀眾席為梯形內(nèi)切在圓外的區(qū)域,其中,,且在點(diǎn)的同側(cè).為保證視聽(tīng)效果,要求觀眾席內(nèi)每一個(gè)觀眾到舞臺(tái)處的距離都不超過(guò)米.設(shè),.問(wèn):對(duì)于任意,上述設(shè)計(jì)方案是否均能符合要求?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(2)若函數(shù)有兩個(gè)極值點(diǎn),,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于任意實(shí)數(shù),定義設(shè)函數(shù),,則函數(shù)的最大值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給圖中A,B,C,D,E,F六個(gè)區(qū)域進(jìn)行染色,每個(gè)區(qū)域只染一種顏色,且相鄰的區(qū)域不同色.若有4種顏色可供選擇,則共有___種不同的染色方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓的方程為

1)求過(guò)點(diǎn)且與圓相切的直線的方程;

2)直線過(guò)點(diǎn),且與圓交于、兩點(diǎn),若,求直線的方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),圓.

1)若直線過(guò)點(diǎn)且到圓心的距離為,求直線的方程;

2)設(shè)過(guò)點(diǎn)的直線與圓交于、兩點(diǎn)(的斜率為負(fù)),當(dāng)時(shí),求以線段為直徑的圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案