(2012•惠州一模)設(shè)a,b為實(shí)數(shù),若復(fù)數(shù)(1+i)•(a+bi)=1+2i,則( 。
分析:根據(jù)兩個(gè)復(fù)數(shù)相除,分子和分母同時(shí)乘以分母的共軛復(fù)數(shù),虛數(shù)單位i的冪運(yùn)算性質(zhì),求出a+bi=
3+i
2
,可得a、b的值.
解答:解:∵復(fù)數(shù)(1+i)•(a+bi)=1+2i,∴a+bi=
1+2i
1+i
=
(1+2i)(1-i)
(1+i)(1-i)
=
3+i
2
,因此 a=
3
2
,b=
1
2

故選A.
點(diǎn)評:本題主要考查兩個(gè)復(fù)數(shù)代數(shù)形式的除法,虛數(shù)單位i的冪運(yùn)算性質(zhì),兩個(gè)復(fù)數(shù)相等的充要條件,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•惠州一模)已知函數(shù)f(x)是(-∞,+∞)上的偶函數(shù),若對于x≥0都有f(x+2)=f(x),且當(dāng)x∈[0,2)時(shí),f(x)=log2(x+1),則f(-2011)+f(2012)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•惠州一模)一動(dòng)圓與圓O1:(x-1)2+y2=1外切,與圓O2:(x+1)2+y2=9內(nèi)切.
(I)求動(dòng)圓圓心M的軌跡L的方程.
(Ⅱ)設(shè)過圓心O1的直線l:x=my+1與軌跡L相交于A、B兩點(diǎn),請問△ABO2(O2為圓O2的圓心)的內(nèi)切圓N的面積是否存在最大值?若存在,求出這個(gè)最大值及直線l的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•惠州一模)已知平面向量
.
a
=(1,2),
b
=(-2,m)
,且
a
.
b
,則2
.
a
+3
b
=
(-4,-8)
(-4,-8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•惠州一模)定義平面向量之間的一種運(yùn)算“⊙”如下:對任意的
a
=(m,n),
b
=(p,q),令
a
b
=mq-np,下面說法錯(cuò)誤的序號是( 。
①若
a
b
共線,則
a
b
=0                     
a
b
=
b
a

③對任意的λ∈R,有(λ
a
)⊙
b
=λ(
a
b
)      
(
a
b
)
2
+(
a
b
)
2
=|
a
|
2
|
b
|
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•惠州一模)等比數(shù)列{an}中,a3=6,前三項(xiàng)和S3=18,則公比q的值為(  )

查看答案和解析>>

同步練習(xí)冊答案