【題目】已知某智能手機(jī)制作完成之后還需要依次通過三道嚴(yán)格的審核程序,已知第一道審核、第二道審核、第三道審核通過的概率分別為 ,每道程序是相互獨(dú)立的,且一旦審核不通過就停止審核,每部手機(jī)只有三道程序都通過才能出廠銷售.
(1)求審核過程中只進(jìn)行兩道程序就停止審核的概率;
(2)現(xiàn)有3部該智能手機(jī)進(jìn)入審核,記這3部手機(jī)可以出廠銷售的部數(shù)為,求X的分布列及數(shù)學(xué)期望.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某食品公司研發(fā)生產(chǎn)一種新的零售食品,從產(chǎn)品中抽取100件作為樣本,測量這些產(chǎn)品的一項質(zhì)量指標(biāo)值,由測量結(jié)果得到如圖頻率分布直方圖:
(Ⅰ)求直方圖中的值;
(Ⅱ)由頻率分布直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,試計算數(shù)據(jù)落在上的概率.
參考數(shù)據(jù):若,則, .
(Ⅲ)設(shè)生產(chǎn)成本為,質(zhì)量指標(biāo)為,生產(chǎn)成本與質(zhì)量指標(biāo)之間滿足函數(shù)關(guān)系假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的右端點(diǎn)值代替,試計算生產(chǎn)該食品的平均成本.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為, 是橢圓上任意一點(diǎn),且點(diǎn)到橢圓的一個焦點(diǎn)的最大距離等于.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點(diǎn)的直線與橢圓相交于不同兩點(diǎn),設(shè)為橢圓上一點(diǎn),是否存在整數(shù),使得(其中為坐標(biāo)原點(diǎn))?若存在,試求整數(shù)的所有取值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1) 若是函數(shù)的一個極值點(diǎn),求值和函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,求在區(qū)間上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)今信息時代,眾多高中生也配上了手機(jī).某校為研究經(jīng)常使用手機(jī)是否對學(xué)習(xí)成績有影響,隨機(jī)抽取高三年級50名理科生的一次數(shù)學(xué)周練成績,并制成下面的列聯(lián)表:
及格 | 不及格 | 合計 | |
很少使用手機(jī) | 20 | 6 | 26 |
經(jīng)常使用手機(jī) | 10 | 14 | 24 |
合計 | 30 | 20 | 50 |
(1)判斷是否有的把握認(rèn)為經(jīng)常使用手機(jī)對學(xué)習(xí)成績有影響?
(2)從這50人中,選取一名很少使用手機(jī)的同學(xué)記為甲和一名經(jīng)常使用手機(jī)的同學(xué)記為乙,解一道數(shù)學(xué)題,甲、乙獨(dú)立解出此題的概率分別為,且 ,若,則此二人適合結(jié)為學(xué)習(xí)上互幫互助的“學(xué)習(xí)師徒”,記為兩人中解出此題的人數(shù),若的數(shù)學(xué)期望,問兩人是否適合結(jié)為“學(xué)習(xí)師徒”?
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
參考公式及數(shù)據(jù): ,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)若是 的一個極值點(diǎn),求 值及的單調(diào)區(qū)間;
(2)當(dāng) 時,求在區(qū)間上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中, 為正三角形,四邊形為矩形,平面 平面, , 分別為的中點(diǎn)。
(Ⅰ)求證: //平面;
(Ⅱ)求二面角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為實數(shù),函數(shù).
(1)求的極值;
(2)當(dāng)在什么范圍內(nèi)取值時,曲線與軸僅有一個交點(diǎn)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com