【題目】已知函數(shù).
()求函數(shù)的定義域.
()判斷在定義域上的單調性,并用單調性定義證明你的結論.
()求函數(shù)的值域.
【答案】(1)定義域為;(2)見解析;(3).
【解析】試題分析:(1)由對任意,有,所以定義域為;
(2)設, 且, ,分析得,從而得解;
(3)易得,從而可得,即可得解.
試題解析:
()顯然對任意,有,∴的定義域為.
()設, 且,
則,
∵為增函數(shù),且,
∴,且恒成立,
于是,
即,
故是上的減函數(shù).
()因為,
所以,
所以,
所以,
所以的值域是.
點睛: 證明函數(shù)單調性的一般步驟:(1)取值:在定義域上任取,并且(或);(2)作差: ,并將此式變形(要注意變形到能判斷整個式子符號為止);(3)定號:判斷的正負(要注意說理的充分性),必要時要討論;(4)下結論:根據(jù)定義得出其單調性.
科目:高中數(shù)學 來源: 題型:
【題目】給出下列五個命題:
①過點(-1,2)的直線方程一定可以表示為y-2=k(x+1)的形式(k∈R);
②過點(-1,2)且在x軸、y軸截距相等的直線方程是x+y-1=0;
③過點M(-1,2)且與直線l:Ax+By+C=0(AB≠0)垂直的直線方程是B(x+1)+A(y-2)=0;
④設點M(-1,2)不在直線l:Ax+By+C=0(AB≠0)上,則過點M且與l平行的直線方程是A(x+1)+B(y-2)=0;
⑤點P(-1,2)到直線ax+y+a2+a=0的距離不小于2.
以上命題中,正確的序號是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在長方體ABCD﹣A1B1C1D1中,棱AD=DC=3,DD1=4,E是A1A的中點.
(1)求證:A1C∥平面BED;
(2)求二面角E﹣BD﹣A的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
(1)當時,求函數(shù)的值域;
(2)如果對任意的,不等式恒成立,求實數(shù)的取值范圍;
(3)是否存在實數(shù),使得函數(shù)的最大值為0,若存在,求出的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在遞增等差數(shù)列{an}中,a1=2,a3是a1和a9的等比中項. (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn= ,Sn為數(shù)列{bn}的前n項和,是否存在實數(shù)m,使得Sn<m對于任意的n∈N+恒成立?若存在,請求實數(shù)m的取值范圍,若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司有30名男職員和20名女職員,公司進行了一次全員參與的職業(yè)能力測試,現(xiàn)隨機詢問了該公司5名男職員和5名女職員在測試中的成績(滿分為30分),可知這5名男職員的測試成績分別為16,24,18,
22,20,5名女職員的測試成績分別為18,23,23,18,23,則下列說法一定正確的是( )
A. 這種抽樣方法是分層抽樣
B. 這種抽樣方法是系統(tǒng)抽樣
C. 這5名男職員的測試成績的方差大于這5名女職員的測試成績的方差
D. 該測試中公司男職員的測試成績的平均數(shù)小于女職員的測試成績的平均數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形是平行四邊形,點, , 分別為線段, , 的中點.
()證明平面;
()證明平面平面;
()在線段上找一點,使得平面,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com