【題目】某校對高二年段的男生進行體檢,現(xiàn)將高二男生的體重數(shù)據(jù)進行整理后分成6組,并繪制部分頻率分布直方圖(如圖所示).已知第三組的人數(shù)為200.根據(jù)一般標準,高二男生體重超過屬于偏胖,低于屬于偏瘦.觀察圖形的信息,回答下列問題:

(1)求體重在內(nèi)的頻率,并補全頻率分布直方圖;

(2)用分層抽樣的方法從偏胖的學生中抽取人對日常生活習慣及體育鍛煉進行調(diào)查,則各組應分別抽取多少人?

(3)根據(jù)頻率分布直方圖,估計高二男生的體重的中位數(shù)與平均數(shù).

【答案】(1) (2) 三段人數(shù)分別為32,1 (3)

【解析】試題分析:(1)利用頻率分布直方圖的性質(zhì)能求出求出體重在[60,65)內(nèi)的頻率,由此能補全的頻率分布直方圖;(2)設男生總人數(shù)為n,由,可得n=1000,從而體重超過65kg的總人數(shù)300,由此能求出各組應分別抽取的人數(shù);(3)利用頻率分布直方圖能估計高二男生的體重的中位數(shù)與平均數(shù)

試題解析:(1)體重在內(nèi)的頻率

補全的頻率分布直方圖如圖所示.

2)設男生總人數(shù)為,

,可得

體重超過的總人數(shù)為

的人數(shù)為,應抽取的人數(shù)為,

的人數(shù)為,應抽取的人數(shù)為,

的人數(shù)為,應抽取的人數(shù)為.

所以在,,三段人數(shù)分別為3,2,1.

3)中位數(shù)為60kg,平均數(shù)為

(kg)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示, 是某海灣旅游區(qū)的一角,為營造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委會決定建立面積為平分千米的三角形主題游戲樂園,并在區(qū)域建立水上餐廳.

已知, .

(1)設 ,用表示,并求的最小值;

(2)設為銳角),當最小時,用表示區(qū)域的面積,并求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】重慶市乘坐出租車的收費辦法如下:

不超過3千米的里程收費10;

超過3千米的里程按每千米2元收費(對于其中不足千米的部分,若其小于05千米則不收費,若其大于或等于05千米則按1千米收費);

當車程超過3千米時,另收燃油附加費1元.

相應系統(tǒng)收費的程序框圖如圖所示,其中(單位:千米)為行駛里程,(單位:元)為所收費用,用表示不大于的最大整數(shù),則圖中處應填(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

)求的單調(diào)區(qū)間;

)若曲線有三個不同的交點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求的最小正周期和單調(diào)遞增區(qū)間;

(Ⅱ)說明函數(shù)的圖像可由正弦曲線經(jīng)過怎樣的變化得到;

(Ⅲ)若是第二象限的角,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】種飲料每箱裝有6聽,經(jīng)檢測,箱中每的容量(單位:ml)如以下莖葉圖所示.

)求這箱飲料的平均容量和容量的中位數(shù);

)如果從這箱飲料中隨機取出2聽飲用,求取到的2聽飲料中至少有1聽的容量為250ml概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求曲線在點處的切線方程和函數(shù)的極值:

(2)若對任意,都有成立,求實數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1) 時,求函數(shù)的單調(diào)區(qū)間

討論函數(shù)在定義域內(nèi)的極值點的個數(shù);

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】葫蘆島市某高中進行一項調(diào)查:2012年至2016年本校學生人均年求學花銷(單位:萬元)的數(shù)據(jù)如下表:

年份

2012

2013

2014

2015

2016

年份代號

1

2

3

4

5

年求學花銷

3.2

3.5

3.8

4.6

4.9

(1)求關于的線性回歸方程;

(2)利用(1)中的回歸方程,分析2012年至2016年本校學生人均年求學花銷的變化情況,并預測該地區(qū)2017年本校學生人均年求學花銷情況.

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

查看答案和解析>>

同步練習冊答案