【題目】已知函數(shù)的定義域是,有下列四個命題,其中正確的有( )
A.對于(,0),函數(shù)在上是單調(diào)增函數(shù)
B.對于(0,),函數(shù)存在最小值
C.存在(,0),使得對于任意,都有成立
D.存在(0,),使得函數(shù)有兩個零點
【答案】ABD
【解析】
當時,恒成立,可得正確;當時,利用二次求導可知函數(shù)在定義域內(nèi)存在最小值,故正確;當時,根據(jù)時,可知不正確;當時,根據(jù)函數(shù)的最小值小于零能成立,可知正確.
因為,定義域為,
,
當時,恒成立,所以在上是單調(diào)增函數(shù),故正確;
當時,令,則,所以為增函數(shù),設(shè)的根為,即,則當時,,此時,在上遞減;當時,,此時,在上遞增,所以函數(shù)在時取得最小值,故正確;
當時,由知,函數(shù)在上是單調(diào)增函數(shù),因為時,,,所以,所以不正確;
當時,由知,函數(shù)在時取得最小值,要使得函數(shù)有兩個零點,必須且只需函數(shù)的最小值小于0即可,即,
那么當時,有,
所以存在,使上式成立,故正確.
故選:ABD.
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)圖象上所有點的橫坐標縮短為原來的,縱坐標不變,再向右平移個單位長度,得到函數(shù)的圖象,則下列說法正確的是( )
A. 函數(shù)的一條對稱軸是
B. 函數(shù)的一個對稱中心是
C. 函數(shù)的一條對稱軸是
D. 函數(shù)的一個對稱中心是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】高血壓高血糖和高血脂統(tǒng)稱“三高”.如圖是西南某地區(qū)從2010年至2016年患“三高”人數(shù)y(單位:千人)的折線圖.
(1)由折線圖看出,可用線性回歸模型擬合與的關(guān)系,請求出相關(guān)系數(shù)(精確到0.01)并加以說明;
(2)建立關(guān)于的回歸方程,預測2018年該地區(qū)患“三高”的人數(shù).
參考數(shù)據(jù):,,,.參考公式:相關(guān)系數(shù) 回歸方程 中斜率和截距的最小二乘法估計公式分別為:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,AB是圓O的直徑,C是圓上的點,平面PAC⊥平面ABC,PA⊥AB.
(1)求證:PA⊥平面ABC;
(2)若PA=AC=2,求點A到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖:設(shè)一正方形紙片ABCD邊長為2分米,切去陰影部分所示的四個全等的等腰三角形,剩余為一個正方形和四個全等的等腰三角形,沿虛線折起,恰好能做成一個正四棱錐(粘接損耗不計),圖中,O為正四棱錐底面中心.
(Ⅰ)若正四棱錐的棱長都相等,求這個正四棱錐的體積V;
(Ⅱ)設(shè)等腰三角形APQ的底角為x,試把正四棱錐的側(cè)面積S表示為x的函數(shù),并求S的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為常數(shù)).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)是否存在正實數(shù),使得對任意,都有,若存在,求出實數(shù)的取值范圍;若不存在,請說明理由;
(Ⅲ)當時, ,對恒成立,求整數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)的圖象向左平移個單位后得到的圖象對應(yīng)的函數(shù)是奇函數(shù),則直線的斜率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l:與拋物線C:相切.
(1)求拋物線方程;
(2)斜率不為0的直線經(jīng)過拋物線C的焦點F,交拋物線于兩點A,B,拋物線C上是否存在兩點D,E關(guān)于直線對稱.若存在求出斜率k的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com