已知函數(shù)f(x)=loga(x+1)-loga(1-x),g(x)=loga(x+1)+loga(x-1)(其中a>1);
(1)求出函數(shù)f(x),g(x)的定義域;
(2)求函數(shù)f(x),g(x)的奇偶性.
解:(1)由于已知函數(shù) f(x)=log
a(x+1)-log
a(1-x),g(x)=log
a(x+1)+log
a(x-1)(其中a>1),
要使f(x)有意義,則要:x+1>0,且1-x>0.
解得:-1<x<1,∴函數(shù)f(x)的定義域?yàn)閧x|-1<x<1}.
對(duì)于函數(shù)g(x),由解析式可得
,解得x>1,故它的定義域?yàn)椋?,+∞).
(2)對(duì)于函數(shù)y=f(x),由于它的定義域?yàn)椋?1,1),關(guān)于原點(diǎn)對(duì)稱,且f(-x)=log
a(-x+1)-log
a(1+x)=-f(x),
故函數(shù)f(x)為奇函數(shù).
由于函數(shù)g(x)的定義域?yàn)閧x|x>1},不關(guān)于原點(diǎn)對(duì)稱,故函數(shù)g(x)既不是奇函數(shù),也不是偶函數(shù).
分析:(1)由使f(x)的解析式x+1>0,且1-x>0,由此求得x的范圍,即可得到函數(shù)f(x)的定義域.對(duì)于函數(shù)g(x),由解析式可得
,由此求得它的定義域.
(2)對(duì)于函數(shù)y=f(x),由于它的定義域關(guān)于原點(diǎn)對(duì)稱,且f(-x)=-f(x),可得函數(shù)f(x)為奇函數(shù).由于函數(shù)g(x)的定義域不關(guān)于原點(diǎn)對(duì)稱,可得函數(shù)g(x)為非奇非偶函數(shù)
點(diǎn)評(píng):本題主要考查對(duì)數(shù)函數(shù)的圖象和性質(zhì)的綜合應(yīng)用,判斷函數(shù)的奇偶性的方法,屬于中檔題.