【題目】已知向量 =(﹣3,1), =(1,﹣2), = +k (k∈R).
(1)若 與向量2 ﹣ 垂直,求實(shí)數(shù)k的值;
(2)若向量 =(1,﹣1),且 與向量k + 平行,求實(shí)數(shù)k的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓(x+1)2+y2=8內(nèi)有一點(diǎn)P(﹣1,2),AB過點(diǎn)P,
(1)若弦長 ,求直線AB的傾斜角;
(2)若圓上恰有三點(diǎn)到直線AB的距離等于 ,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中.
(1)設(shè) = ,求證:△ABC是等腰三角形;
(2)設(shè)向量 =(2sinC,﹣ ), =(sin2C,2cos2 ﹣1),且 ∥ ,若sinA= ,求sin( ﹣B)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方體ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E,F(xiàn)分別是棱AB,BC的中點(diǎn).證明A1 , C1 , F,E四點(diǎn)共面,并求直線CD1與平面A1C1FE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上的函數(shù),f(0)=2,對任意x∈R,f(x)+f′(x)>1,則不等式exf(x)>ex+1的解集為( )
A.(0,+∞)
B.(﹣∞,0)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣∞,﹣1)∪(0,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=( )x﹣2x .
(1)若f(x)= ,求x的值;
(2)若不等式f(2m﹣mcosθ)+f(﹣1﹣cosθ)<f(0)對所有θ∈[0, ]都成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的偶函數(shù)f(x)滿足f(x)+f(x+1)=0,且在[﹣3,﹣2]上f(x)=2x+5,A、B是三邊不等的銳角三角形的兩內(nèi)角,則下列不等式正確的是( )
A.f(sinA)>f(sinB)
B.f(cosA)>f(cosB)
C.f(sinA)>f(cosB)
D.f(sinA)<f(cosB)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P是圓F1:(x+1)2+y2=16上任意一點(diǎn)(F1是圓心),點(diǎn)F2與點(diǎn)F1關(guān)于原點(diǎn)對稱.線段PF2的中垂線m分別與PF1、PF2交于M、N兩點(diǎn).
(1)求點(diǎn)M的軌跡C的方程;
(2)直線l經(jīng)過F2 , 與拋物線y2=4x交于A1 , A2兩點(diǎn),與C交于B1 , B2兩點(diǎn).當(dāng)以B1B2為直徑的圓經(jīng)過F1時,求|A1A2|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C: =1,點(diǎn)M與曲線C的焦點(diǎn)不重合,若點(diǎn)M關(guān)于曲線C的兩個焦點(diǎn)的對稱點(diǎn)分別為A,B,M,N是坐標(biāo)平面內(nèi)的兩點(diǎn),且線段MN的中點(diǎn)P恰好在雙曲線C上,則|AN﹣BN|= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com