【題目】某中學(xué)一名數(shù)學(xué)老師對全班50名學(xué)生某次考試成績分男女生進(jìn)行統(tǒng)計(滿分150分),其中120分(含120分)以上為優(yōu)秀,繪制了如圖所示的兩個頻率分布直方圖:

(1)根據(jù)以上兩個直方圖完成下面的列聯(lián)表:

性別 成績

優(yōu)秀

不優(yōu)秀

總計

男生

女生

總計

(2)根據(jù)(1)中表格的數(shù)據(jù)計算,你有多大把握認(rèn)為學(xué)生的數(shù)學(xué)成績與性別之間有關(guān)系?

2.072

2.706

3.841

5.024

6.635

7.879

10.828

0.15

0.10

0.05

0.025

0.010

0.005

0.001

附:,其中.

【答案】(1)見解析(2)有

【解析】分析: (1)根據(jù)已知的數(shù)據(jù)完成2×2列聯(lián)表. (2)先計算,再判斷有多大把握認(rèn)為學(xué)生的數(shù)學(xué)成績與性別之間有關(guān)系.

詳解:(1)

性別 成績

優(yōu)秀

不優(yōu)秀

總計

男生

13

10

23

女生

7

20

27

總計

20

30

50

(2)由(1)中表格的數(shù)據(jù)知,,

,∴ 有95%的把握認(rèn)為學(xué)生的數(shù)學(xué)成績與性別之間有關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知點(diǎn),直線l與圓C:(x一1)2+(y一2)2=4相交于AB兩點(diǎn),且OAOB

(1)若直線OA的方程為y=一3x,求直線OB被圓C截得的弦長;

(2)若直線l過點(diǎn)(0,2),求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)(其中,,)的圖象如圖所示,為了得到的圖象,只需把的圖象上所有的點(diǎn)()

A. 向右平移個單位長度B. 向左平移個單位長度

C. 向右平移個單位長度D. 向左平移個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,其余棱長均為是棱上的一點(diǎn),分別為棱的中點(diǎn).

(1)求證: 平面平面

(2)若平面,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列中,,.若記表示不超過的最大整數(shù),(如).令,則數(shù)列的前2000項和為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓C1與C2的中心在坐標(biāo)原點(diǎn)O,長軸均為MN且在x軸上,短軸長分別為2m,2n(m>n),過原點(diǎn)且不與x軸重合的直線l與C1 , C2的四個交點(diǎn)按縱坐標(biāo)從大到小依次為A,B,C,D,記 ,△BDM和△ABN的面積分別為S1和S2

(1)當(dāng)直線l與y軸重合時,若S1=λS2 , 求λ的值;
(2)當(dāng)λ變化時,是否存在與坐標(biāo)軸不重合的直線l,使得S1=λS2?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電影院共有個座位,某天,這家電影院上、下午各演一場電影.看電影的是甲、乙、丙三所中學(xué)的學(xué)生,三所學(xué)校的觀影人數(shù)分別是985人,1010人,2019人(同一所學(xué)校的學(xué)生既可看上午場,又可看下午場,但每人只能看一場).已知無論如何排座位,這天觀影時總存在這樣的一個座位,上、下午在這個座位上坐的是同一所學(xué)校的學(xué)生,那么的可能取值有__________個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求曲線在點(diǎn)處的切線方程;

(Ⅱ)若函數(shù)在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;

(Ⅲ)設(shè)函數(shù),其中.證明:的圖象在圖象的下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求下列函數(shù)的值域:

(1)y;

(2)y;

(3)yx4;

(4)y(x1)

查看答案和解析>>

同步練習(xí)冊答案