【題目】如果若干個函數(shù)的圖象經(jīng)過平移后能夠重合,則稱這些函數(shù)“互為生成”函數(shù),給出下列函數(shù):
①f(x)=sinx﹣cosx,
②f(x)= (sinx+cosx),
③f(x)= sinx+2,
④f(x)=sinx,其中互為生成的函數(shù)是( )
A.①②
B.①③
C.③④
D.②④
【答案】B
【解析】解:根據(jù)題意,兩個y=Asin(ωx+)+b 型函數(shù)互為生成的函數(shù)的條件是,這兩個函數(shù)的解析式中的A和ω相同,
∵①f(x)=sinx﹣cosx= sin(x﹣ ),②f(x)= (sinx+cosx)=2sin(x+ ),
③f(x)= sinx+2,④f(x)=sinx.
故①③兩個函數(shù)解析式中的A和ω相同,故這兩個函數(shù)的圖象通過平移能夠完全重合.
故①③互為生成的函數(shù),
故選B.
【考點精析】利用函數(shù)y=Asin(ωx+φ)的圖象變換對題目進行判斷即可得到答案,需要熟知圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象.
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在矩形ABCD中, ,點分別在邊上,且, 交于點.現(xiàn)將沿折起,使得平面平面,得到圖2.
(Ⅰ)在圖2中,求證: ;
(Ⅱ)若點是線段上的一動點,問點在什么位置時,二面角的余弦值為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中.直線的參數(shù)方程為為(為參數(shù)),在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點.以軸非負半軸為極軸)中.圓的極坐標方程是.
(1)寫出直線的直角坐標方程,并把圓的極坐標方程化為直角坐標方程;
(2)設(shè)圓上的點到直線的距離最小,點到直線的距離最大,求點的橫坐標之積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解小學生近視情況,決定隨機從同一個學校二年級到四年級的學生中抽取60名學生檢測視力,其中二年級共有學生2400人,三年級共有學生2000人,四年級共有學生1600人,則應(yīng)從三年級學生中抽取的學生人數(shù)為( 。
A.24
B.20
C.16
D.18
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線在第一象限內(nèi)的點到焦點的距離為.
(1)若,過點, 的直線與拋物線相交于另一點,求的值;
(2)若直線與拋物線相交于兩點,與圓相交于兩點, 為坐標原點, ,試問:是否存在實數(shù),使得的長為定值?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,若輸出的i的值為8,則判斷框內(nèi)實數(shù)a的取值范圍是 . (寫成區(qū)間或集合的形式)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知{an}是等差數(shù)列,{bn}是各項為正的等比數(shù)列,且a1=b1=1,a3+b5=21,a5+b3=13.
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{an+bn} 的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,△ABC的三個頂點為A(﹣3,0),B(2,1),C(﹣2,3),求:
(Ⅰ)BC邊上高線AH所在直線的方程;
(Ⅱ)若直線l過點B且橫、縱截距互為相反數(shù),求直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com