6.如圖,△ABC中∠A=90°,D,E分別為邊AB,AC上的點,且不與△ABC的頂點重合.已知AE的長為m,AC的長為n,AD,AB的長是關(guān)于x的方程x2-14x+mn=0的兩個根.
(1)證明:C、B、D、E四點共圓;
(2)若m=4,n=6,求C、B、D、E所在圓的半徑.

分析 (1)做出輔助線,根據(jù)所給的AE的長為m,AC的長為n,AD,AB的長是關(guān)于x的方程x2-14x+mn=0的兩個根,得到比例式,根據(jù)比例式得到三角形相似,根據(jù)相似三角形的對應角相等,得到結(jié)論.
(2)根據(jù)所給的條件做出方程的兩個根,即得到兩條線段的長度,取CE的中點G,DB的中點F,分別過G,F(xiàn)作AC,AB的垂線,兩垂線相交于H點,連接DH,根據(jù)四點共圓得到半徑的大。

解答 (1)證明:連結(jié)DE,根據(jù)題意在△ADE和△ACB中,AD×AB=mn=AE×AC,
即$\frac{AD}{AC}$=$\frac{AE}{AB}$,又∠DAE=∠CAB,從而△ADE∽△ACB.

因此∠ADE=∠ACB,所以C,B,D,E四點共圓.
(2)解:m=4,n=6時,方程x2-14x+mn=0的兩根為x1=2,x2=12,故AD=2,AB=12.
取CE的中點G,DB的中點F,分別過G,F(xiàn)作AC,AB的垂線,兩垂線相交于H點,連結(jié)DH.
因為C,B,D,E四點共圓,所以C,B,D,E四點所在圓的圓心為H,半徑為DH.
由于∠A=90°,故GH∥AB,HF∥AC,
從而$HF=AG=5,DF=\frac{1}{2}(12-2)=5$.
故C,B,D,E四點所在圓的半徑為$5\sqrt{2}$.

點評 本題考查圓周角定理,考查與圓有關(guān)的比例線段,考查一元二次方程的解,考查四點共圓的判斷和性質(zhì),屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

20.己知集合A=[0,1),B=[1,+∞),函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}-{x}^{2},x∈A}\\{2{x}^{2}-x+a,x∈B}\end{array}\right.$,若對任意x0∈A,都有f(f(x0))∈B,則實數(shù)a的取值范圍是( 。
A.[-1,2)B.[-1,+∞)C.[0,+∞)D.(-2,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知三次函數(shù)f(x)=ax3+bx2+cx+d的圖象如圖所示,則$\frac{f′(-2)}{f′(1)}$=( 。
A.5B.-5C.2D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.若圓x2+y2=m與圓x2+y2+6x-8y-11=0相切,則實數(shù)m的值為1或121.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.確定結(jié)論“X與Y有關(guān)系”的可信度為99.9%時,則隨機變量k2的觀測值k必須(  )
A.大于10.828B.小于7.829C.小于6.635D.大于2.706

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.冪函數(shù)f(x)=xα在[0,+∞)上的增函數(shù),則α的取值范圍是( 。
A.(-∞,0)B.(-1,0)C.(0,1)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.對于實數(shù)x,用[x]表示不超過x的最大整數(shù),如[0.41]=0,[7.28]=7,若n為正整數(shù),an=[$\frac{n}{3}$],Sn為數(shù)列{an}的前n項和,S3n=$\frac{3}{2}{n}^{2}-\frac{n}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設(shè)${({5x-\frac{1}{{\sqrt{x}}}})^n}$的展開式的二項式系數(shù)和為64,則展開式中常數(shù)項為( 。
A.375B.-375C.15D.-15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.一個容量為10的樣本數(shù)據(jù),分組后,組距與頻數(shù)如下:
組距(1,2](2,3](3,4](4,5](5,6](6,7]
頻數(shù)112312
則樣本落在區(qū)間(-∞,5]的頻率是$\frac{7}{10}$.

查看答案和解析>>

同步練習冊答案