四棱錐
P-ABCD的底面為正方形,PD⊥平面ABCD,PD=AD=1,設(shè)點(diǎn)C到平面PAB的距離為a,點(diǎn)B到平面PAC的距離為b,則有[
]
A .1<a<b |
B .a>b>1 |
C .a<1<b |
D .b<a<1 |
解析: C到平面PAB的距離等于D到平面PAB的距離,而D到平面PAB的距離為△PAD斜邊上的高,∴,點(diǎn)B到平面PAC的距離等于D到平面PAC的距離,而D到平面PAC的距離,可由三棱錐P-ADC的體積等于三棱錐D-PAC的體積求得為,∴b<a<1. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
[2012·永春一中二模] 四棱錐P-ABCD的頂點(diǎn)P在底面ABCD上的投影恰好是A,其正視圖與側(cè)視圖都是腰長(zhǎng)為a的等腰直角三角形.則在四棱錐P-ABCD的任意兩個(gè)頂點(diǎn)的連線(xiàn)中,互相垂直的異面直線(xiàn)共有________對(duì).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆山西省高二第一次月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
如右圖所示,正四棱錐P-ABCD的底面積為3,體積為,E為側(cè)棱PC的中點(diǎn),則PA與BE所成的角為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年安徽省高三上學(xué)期第二次月考理科數(shù)學(xué)試卷 題型:解答題
如圖,四棱錐P-ABCD的底面ABCD為矩形,且PA=AD=1,AB=2, ,.
(1)求證:平面平面;
(2)求三棱錐D-PAC的體積;
(3)求直線(xiàn)PC與平面ABCD所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com