【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c,且.
(1)求角A;
(2)若a=2,△ABC的周長為6,求△ABC的面積.
【答案】(1); (2).
【解析】
(1)利用正弦定理邊角互化與和差角公式化簡求即可.
(2)利用a=2,△ABC的周長為6可求出b+c=4.再用余弦定理與化簡出關于的表達式從而得出再求解面積即可.
(1)∵,
∴由正弦定理可得3sinAcosBsinBsinA=3sinC,
∵sinC=sin(A+B)=sinAcosB+sinBcosA,
∴sinBsinA=3cosAsinB,
∵sinB≠0,∴sinA=3cosA,可得tanA,
∵A∈(0,π),∴A.
(2)∵A,a=2,△ABC的周長為6,
∴b+c=4,
∴由余弦定理a2=b2+c2﹣2bccosA,可得4=b2+c2﹣bc=(b+c)2﹣3bc=16﹣3bc,解得bc=4,
∴S△ABCbcsinA.
科目:高中數(shù)學 來源: 題型:
【題目】中國有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長方體、正方體或圓柱體,但南北朝時期的官員獨孤信的印信形狀是“半正多面體”(圖1).半正多面體是由兩種或兩種以上的正多邊形圍成的多面體.半正多面體體現(xiàn)了數(shù)學的對稱美.圖2是一個棱數(shù)為48的半正多面體,它的所有頂點都在同一個正方體的表面上,且此正方體的棱長為1.則該半正多面體共有________個面,其棱長為_________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)y=f(x)在區(qū)間D上是增函數(shù),且函數(shù)y=在區(qū)間D上是減函數(shù),則稱函數(shù)f(x)是區(qū)間D上的“H函數(shù)”.對于命題:
①函數(shù)f(x)=-x+是區(qū)間(0,1)上的“H函數(shù)”;
②函數(shù)g(x)=是區(qū)間(0,1)上的“H函數(shù)”.下列判斷正確的是( 。
A. 和均為真命題 B. 為真命題,為假命題
C. 為假命題,為真命題 D. 和均為假命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解甲、乙兩種離子在小鼠體內的殘留程度,進行如下試驗:將200只小鼠隨機分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過一段時間后用某種科學方法測算出殘留在小鼠體內離子的百分比.根據(jù)試驗數(shù)據(jù)分別得到如下直方圖:
記為事件:“乙離子殘留在體內的百分比不低于”,根據(jù)直方圖得到的估計值為.
(1)求乙離子殘留百分比直方圖中的值;
(2)分別估計甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】華為手機作為華為公司三大核心業(yè)務之一,2018年的銷售量躍居全球第二名,某機構隨機選取了100名華為手機的顧客進行調查,并將這人的手機價格按照,,…分成組,制成如圖所示的頻率分布直方圖,其中是的倍.
(1)求,的值;
(2)求這名顧客手機價格的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中間值作代表);
(3)利用分層抽樣的方式從手機價格在和的顧客中選取人,并從這人中隨機抽取人進行回訪,求抽取的人手機價格在不同區(qū)間的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價格依次為60元/盒、65元/盒、80元/盒、90元/盒.為增加銷量,李明對這四種水果進行促銷:一次購買水果的總價達到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會得到支付款的80%.
①當x=10時,顧客一次購買草莓和西瓜各1盒,需要支付__________元;
②在促銷活動中,為保證李明每筆訂單得到的金額均不低于促銷前總價的七折,則x的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義首項為1且公比為正數(shù)的等比數(shù)列為“M-數(shù)列”.
(1)已知等比數(shù)列{an}滿足:,求證:數(shù)列{an}為“M-數(shù)列”;
(2)已知數(shù)列{bn}滿足:,其中Sn為數(shù)列{bn}的前n項和.
①求數(shù)列{bn}的通項公式;
②設m為正整數(shù),若存在“M-數(shù)列”{cn},對任意正整數(shù)k,當k≤m時,都有成立,求m的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某縣畜牧技術員張三和李四9年來一直對該縣山羊養(yǎng)殖業(yè)的規(guī)模進行跟蹤調查,張三提供了該縣某山羊養(yǎng)殖場年養(yǎng)殖數(shù)量單位:萬只與相應年份序號的數(shù)據(jù)表和散點圖如圖所示,根據(jù)散點圖,發(fā)現(xiàn)y與x有較強的線性相關關系,李四提供了該縣山羊養(yǎng)殖場的個數(shù)單位:個關于x的回歸方程.
年份序號x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
年養(yǎng)殖山羊萬只 |
根據(jù)表中的數(shù)據(jù)和所給統(tǒng)計量,求y關于x的線性回歸方程參考統(tǒng)計量:,;
試估計:該縣第一年養(yǎng)殖山羊多少萬只
到第幾年,該縣山羊養(yǎng)殖的數(shù)量與第一年相比縮小了?
附:對于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計分別為,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com