解答:
解:(Ⅰ)函數(shù)的定義域?yàn)椋?,+∞),
函數(shù)的導(dǎo)數(shù)f′(x)=
,
若m≤0,則f′(x)=
<0,此時(shí)函數(shù)在(0,+∞)上遞減,
若m>0,則由f′(x)>0,解得x>
,此時(shí)函數(shù)單調(diào)遞增,
由f′(x)<0,解得0<x<
,此時(shí)函數(shù)單調(diào)遞減,
故當(dāng)m≤0,函數(shù)的單調(diào)遞減區(qū)間為(0,+∞),
當(dāng)m>0,函數(shù)的單調(diào)遞減區(qū)間為(0,
),單調(diào)遞增區(qū)間為(
,+∞).
(Ⅱ)由(Ⅰ)知m≤0,則f′(x)<0,函數(shù)f(x)在(0,+∞)上遞減,
∵f(1)=0,∴f(x)≥0不恒成立,
若m>2,當(dāng)x∈(
,1)時(shí),f(x)單調(diào)遞增,f(x)<f(1)=0,不合題意,
若0<m<2,當(dāng)x∈(1,
)時(shí),f(x)單調(diào)遞減,f(x)<f(1)=0,不合題意,
若m=2,當(dāng)x∈(0,1)上單調(diào)遞減,f(x)在(1,+∞)單調(diào)遞增,f(x)≥f(1)=0,符合題意,
故m=2時(shí),且lnx≤x-1,(當(dāng)且僅當(dāng)x=1時(shí)取等號),
當(dāng)0<x
1<x
2時(shí),f(x
2)-f(x
1)=2[(x
2-x
1)-ln
],
∵ln
<
-1,∴f(x
2)-f(x
1)=2[(x
2-x
1)-ln
]>2[(x
2-x
1)-(
-1)]
=2(x
2-x
1)(1-
),
因此
>(1-)(x2-x1).