8.已知A(1,2),B(5,4),C(x,3),D(-3,y),且$\overrightarrow{AB}$=$\overrightarrow{CD}$,則x,y的值分別為( 。
A.-7,-5B.7,-5C.-7,5D.7,5

分析 直接利用向量相等列出方程求解即可.

解答 解:A(1,2),B(5,4),C(x,3),D(-3,y),
$\overrightarrow{AB}$=(4,2),$\overrightarrow{CD}$(-3-x,y-3),
$\overrightarrow{AB}$=$\overrightarrow{CD}$,
可得4=-3-x,即x=-7.
2=y-3,.
y=5.
故選:C.

點評 本題考查相等向量的充要條件的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖是函數(shù)f(x)=Asin(ωx+φ)(ω>0,0≤φ<π)在一個周期內(nèi)的圖象,
(1)求函數(shù)f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象向右平移$\frac{π}{6}$個單位,再將得到的圖象上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的解析式,當(dāng)x∈[0,π],求函數(shù)y=g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知命題p:?x0∈R,2${\;}^{{x}_{0}}$=1,則 ( 。
A.¬p:?x∈R,2x=1B.¬p:?x∈R,2x≠1C.¬p:?x∉R,2x≠1D.¬p:?x∉R,2x=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知|$\overrightarrow a|=5$,|$\overrightarrow b|=3$,且$\overrightarrow a$•$\overrightarrow b$=-12,則向量$\overrightarrow a$在向量$\overrightarrow b$上的射影等于( 。
A.-4B.4C.-$\frac{12}{5}$D.$\frac{12}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)化簡:$\frac{sin(\frac{π}{2}-α)sin(π-α)tan(-α+π)}{-tan(-π-α)sin(-\frac{3π}{2}-α)}$;
(2)已知α為第二象限的角,化簡:cosα$\sqrt{\frac{1-sinα}{1+sinα}}$+sinα$\sqrt{\frac{1-cosα}{1+cosα}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.把復(fù)數(shù)z的共軛復(fù)數(shù)記作$\overline{z}$,i為虛數(shù)單位,若z=1+i.
(1)求復(fù)數(shù)(1+z)•$\overline{z}$;
(2)求(1+$\overline{z}$)•z2的模.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖所示的程序框圖,如果輸出的S值為3,則判斷框內(nèi)應(yīng)填入的判斷條件為( 。
A.i<2B.i<3C.i<4D.i<5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{\frac{-2ax+a+1}{x},x>0}\end{array}\right.$(其中-2≤a<-1),若存在區(qū)間[m,n],使函數(shù)f(x)的定義域和值域均為[m,n],則|m-n|的最大值是( 。
A.$\sqrt{3}$B.3C.12D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若f(x)=3sin(2ωx+$\frac{π}{6}$)-1在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上單調(diào)遞增,則正實數(shù)ω的取值范圍(0,$\frac{1}{2}$].

查看答案和解析>>

同步練習(xí)冊答案