如圖所示,直線過原點,且與半圓(x-2)2+y2=1(y>0)交于P、Q,若|OP|=2|PQ|,求此直線方程.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知長方形ABCD,AB=2
2
,BC=1.以AB的中點O為原點建立如圖所示的平面直角坐標系xoy.橢圓Γ以A、B為焦點,且過C、D兩點.
(Ⅰ)求橢圓Γ的標準方程;
(Ⅱ)過點P(0,2)的直線l交橢圓Γ于M,N兩點,是否存在直線l,使得OM⊥ON?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示的平面直角坐標系xoy中,已知直線l與半徑為1的⊙D相切于點C,動點P到直線l的距離為d,若d=
2
|PD|

(1)求點P的軌跡方程;
(2)直線l過Q(0,2)且與軌跡P交于M、N兩點,若以MN為直徑的圓過原點O,求出直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)本題有(1),(2),(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑.
(1)選修4-2:矩陣與變換
如圖所示:△OAB在伸縮變換M作用下變?yōu)椤鱋A1B1
(i)求矩陣M的特征值及相應(yīng)的特征向量;
(ii)求逆矩陣M-1以及(M-120
(2)選修4-4:坐標系與參數(shù)方程.
已知曲線C1的參數(shù)方程為
x=2sinθ
y=cosθ
(θ為參數(shù)),曲線C2的參數(shù)方程為
x=2t
y=t+1
(t為參數(shù))
(i)若將曲線C1與C2上各點的橫坐標都縮短為原來的一半,分別得到曲線C1和C2,求出曲線C1和C2的普通方程;
(ii)以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系,求過極點且與C2垂直的直線的極坐標方程.
(3)選修4-5:不等式選講
已知a,b,c為實數(shù),且a+b+c+2-2m=0,a2+
b 2
4
+
c 2
9
+m-1=0
(i)求證:a2+
b 2
4
+
c 2
9
(a+b+c) 2
14

(ii)求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,O為坐標原點,過點P(2,0)且斜率為k的直線l交拋物線y2=2xM(x1,y1),N(x2,y2)兩點.

(1)寫出直線l的方程;

(2)求x1x2y1y2的值;

(3)求證:OMON.

查看答案和解析>>

同步練習冊答案