若數(shù)列{a
n}通項公式為a
n=
,則數(shù)列{a
n}的前5項和為______.
∵a
n=
=
-
,
∴a
1+a
2+…+a
5=(1-
)+(
-
)+…+(
-
)
=1-
=
.
故答案為:
.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
設數(shù)列{an}的前n項和為Sn,已知a1=1,Sn+1=4an+2
(Ⅰ)設bn=an+1-2an,證明數(shù)列{bn}是等比數(shù)列
(Ⅱ)求數(shù)列{an}的通項公式.
(Ⅲ)設cn=2nbn,求數(shù)列{cn}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知數(shù)列{a
n}的滿足a
1=3,a
n-3a
n-1=-3
n(n≥2).
(1)求證:數(shù)列
{}是等差數(shù)列;
(2)求數(shù)列{a
n}的通項公式;
(3)求數(shù)列{a
n}的前n項和S
n.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設數(shù)列{a
n}是有窮等差數(shù)列,給出下面數(shù)表:
a
1 a
2a
3 …a
n-1 a
n第1行
a
1+a
2 a
2+a
3 …a
n-1+a
n 第2行
…
…
…第n行
上表共有n行,其中第1行的n個數(shù)為a
1,a
2,a
3…a
n,從第二行起,每行中的每一個數(shù)都等于它肩上兩數(shù)之和.記表中各行的數(shù)的平均數(shù)(按自上而下的順序)分別為b
1,b
2,b
3…b
n.
(1)求證:數(shù)列b
1,b
2,b
3…b
n成等比數(shù)列;
(2)若a
k=2k-1(k=1,2,…,n),求和
n |
|
k=1 |
akbk.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知數(shù)列{a
n}的各項均是正數(shù),其前n項和為S
n,滿足S
n=4-a
n.
(1)求數(shù)列{a
n}的通項公式;
(2)設b
n=
(n∈N
*),數(shù)列{b
nb
n+2}的前n項和為T
n,求證:T
n<
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知等比數(shù)列{a
n}的各項均為正數(shù),且a
1+2a
2=1,a
=4a
2a
6.
(1)求數(shù)列{a
n}的通項公式;
(2)設b
n=log
2a
1+log
2a
2+…+log
2a
n,求數(shù)列{
}的前n項和.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
等比數(shù)列
的首項
,公比
是最小的正整數(shù),則數(shù)列
的前
項的和為
A
B
C
D
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
數(shù)列
中
,
,
(
是不為零的常數(shù),
),且
成等比數(shù)列.
(1)求
的值;
(2)求
的通項公式;
(3)求數(shù)列
的前
項之和
查看答案和解析>>