(2011•浙江模擬)數(shù)列{an}滿足an+1+an=4n-3(n∈N*
(Ⅰ)若{an}是等差數(shù)列,求其通項(xiàng)公式;
(Ⅱ)若{an}滿足a1=2,Sn為{an}的前n項(xiàng)和,求S2n+1
分析:( I)由題意得an+1+an=4n-3,an+2+an+1=4n+1.所以an+2-an=4,由{an}是等差數(shù)列,公差d=2,能求出an=2n-
5
2

(Ⅱ)由a1=2,a1+a2=1,知a2=-1.因?yàn)閍n+2-an=4,所以數(shù)列的奇數(shù)項(xiàng)與偶數(shù)項(xiàng)分別成等差數(shù)列,公差均為4,故a2n-1=4n-2,a2n=4n-5.由此能求出S2n+1
解答:解:( I)由題意得an+1+an=4n-3…①
an+2+an+1=4n+1…②.…(2分)
②-①得an+2-an=4,
∵{an}是等差數(shù)列,設(shè)公差為d,∴d=2,(4分)
∵a1+a2=1∴a1+a1+d=1,∴a1=-
1
2
.(6分)
an=2n-
5
2
.(7分)
(Ⅱ)∵a1=2,a1+a2=1,
∴a2=-1.(8分)
又∵an+2-an=4,
∴數(shù)列的奇數(shù)項(xiàng)與偶數(shù)項(xiàng)分別成等差數(shù)列,公差均為4,
∴a2n-1=4n-2,a2n=4n-5.(11分)
S2n+1=(a1+a3+…+a2n+1)+(a2+a4+…+a2n)(12分)
=(n+1)×2+
(n+1)n
2
×4+n×(-1)+
n(n-1)
2
×4

=4n2+n+2.(14分)
點(diǎn)評(píng):本題數(shù)列的性質(zhì)和應(yīng)用,數(shù)學(xué)思維的要求比較高,有一定的探索性.綜合性強(qiáng),難度大,易出錯(cuò).解題時(shí)要認(rèn)真審題,注意等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•浙江模擬)已知△ABC中,AB=AC=4,BC=4
3
,點(diǎn)D為BC邊的中點(diǎn),點(diǎn)P為BC邊所在直線上的一個(gè)動(dòng)點(diǎn),則
AP
AD
滿足(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•浙江模擬)已知A、B是兩個(gè)不同的點(diǎn),m、n是兩條不重合的直線,α、β是兩個(gè)不重合的平面,則①m?α,A∈m⇒A∈α;②m∩n=A,A∈α,B∈m⇒B∈α;③m?α,n?β,m∥n⇒α∥β;④m?α,m⊥β⇒α⊥β.其中真命題為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•浙江模擬)已知點(diǎn)F是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左焦點(diǎn),點(diǎn)E是該雙曲線的右頂點(diǎn),過F且垂直于x軸的直線與雙曲線交于A,B兩點(diǎn),若△ABE是直角三角形,則該雙曲線的離心率e為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•浙江模擬)將A,B,C,D,E五種不同的文件放入編號(hào)依次為1,2,3,4,5,6,7的七個(gè)抽屜內(nèi),每個(gè)抽屜至多放一種文件,若文件A,B必須放入相鄰的抽屜內(nèi),文件C,D也必須放在相鄰的抽屜內(nèi),則文件放入抽屜內(nèi)的滿足條件的所有不同的方法有(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案