(2010•武昌區(qū)模擬)如圖,已知橢圓
x2
4
+
y2
3
=1
的右焦點(diǎn)為F,過(guò)F的直線(非x軸)交橢圓于M、N兩點(diǎn),右準(zhǔn)線l交x軸于點(diǎn)K,左頂點(diǎn)為A.
(1)求證:KF平分∠MKN;
(2)直線AM、AN分別交準(zhǔn)線l于點(diǎn)P、Q,設(shè)直線MN的傾斜角為θ,試用θ表示線段PQ的長(zhǎng)度|PQ|,并求|PQ|的最小值.
分析:(1)法一:幾何法,分別過(guò)M和N點(diǎn)作準(zhǔn)線的垂線,并設(shè)出對(duì)應(yīng)的垂足,根據(jù)直角梯形列出比例關(guān)系,再由橢圓的第二定義,將到焦點(diǎn)的距離之比轉(zhuǎn)化到對(duì)應(yīng)準(zhǔn)線的距離之比,判斷出∠KMM1=∠KNN1,再由內(nèi)錯(cuò)角相等得到∠MKF=∠NKF,即得到證明;
法二:代數(shù)法,根據(jù)題意設(shè)直線MN的方程為x=my+1,再設(shè)出點(diǎn)M、N的坐標(biāo),聯(lián)立直線和橢圓的方程,消去x得到關(guān)于y的一個(gè)二次方程,根據(jù)韋達(dá)定理表示出y1+y2和y1y2,再代入斜率公式,進(jìn)行證明;
(2)由題意求出點(diǎn)A和右準(zhǔn)線的方程,并設(shè)出四點(diǎn)M、N、P和Q的坐標(biāo),根據(jù)A,M,P三點(diǎn)共線得到對(duì)應(yīng)的斜率相等,求出點(diǎn)P和Q的坐標(biāo),聯(lián)立直線和橢圓的方程,消去x得到關(guān)于y的一個(gè)二次方程,根據(jù)韋達(dá)定理表示出y1+y2和y1y2,再代入兩點(diǎn)之間的距離公式,化簡(jiǎn)后用m表示|PQ|,再把m用cotθ表示,利用三角恒等變換公式和θ∈(0,π),求出最小值.
解答:解:(1)法一:作MM1⊥l于M1,
NN1⊥l于N1,則
|MF|
|NF|
=
|M1K|
|N1K|
,
由橢圓的第二定義,有
|MF|
|NF|
=
|M1M|
|N1N|
,
|N1K|
|NN1|
=
|M1K|
|MM1|

∴∠KMM1=∠KNN1,即∠MKF=∠NKF,
∴KF平分∠MKN.
法二:設(shè)直線MN的方程為x=my+1,
設(shè)M、N的坐標(biāo)分別為(x1,y1),(x2,y2),
x=my+1
x2
4
+
y2
3
=1
得,(3m2+4)y2+6my-9=0,
y1+y2=-
6m
3m2+4
y1y2=-
9
3m2+4

設(shè)KM和KN的斜率分別為k1,k2,顯然只需證k1+k2=0即可.
∵K(4,0),∴k1+k2=
y1
x1-4
+
y2
x2-4
=
x2y1+x1y2-4(y1+y2)
(x1-4)(x2-4)

而x2y1+x1y2-4(y1+y2)=(my2+1)y1+(my1+1)y2-4(y1+y2
=2my1y2-3(y1+y2)=2m•
-9
3m2+4
-3•
-6m
3m2+4
=0
,
即k1+k2=0得證,故KF平分∠MKN.
(2)設(shè)M、N的坐標(biāo)分別為(x1,y1),(x2,y2),
由題意知,A(-2,0),右準(zhǔn)線的方程:x=
a2
c
=4,
故令P(4,yp),Q(4,yq),
∵A,M,P三點(diǎn)共線,∴kAP=kAM,即
yp-0
4+2
=
y1-0
x1+2
,得yp=
6y1
2+x1
,即P點(diǎn)為(4,
6y1
2+x1
)

由A,N,Q三點(diǎn)共線,同理可求出Q點(diǎn)為(4,
6y2
2+x2
)
,
設(shè)直線MN的方程為x=my+1.由
x=my+1
x2
4
+
y2
3
=1
得,(3m2+4)y2+6my-9=0,
y1+y2=-
6m
3m2+4
,y1y2=-
9
3m2+4
,

|PQ|=
6y1
2+x1
-
6y2
2+x2
=
6[2(y1-y2)+x2y1-x1y2]
4+2(x1+x2)+x1x2
=
18(y1-y2)
m2y1y2+3m(y1+y2)+9

=
18
(
6m
3m2+4
)
2
+
36
3m2+4
m2
-9
3m2+4
+3m•
-6m
3m2+4
+9
=6
1+m2

又∵直線MN的傾斜角為θ,則m=cotθ,θ∈(0,π),
|PQ|=6
1+cot2θ
=
6
sinθ
,
θ=
π
2
時(shí),|PQ|min=6.
點(diǎn)評(píng):本題主要考查了直線與橢圓的綜合問(wèn)題,兩點(diǎn)間的距離公式等基礎(chǔ)知識(shí),考查用代數(shù)方法研究圓錐曲線的性質(zhì)和數(shù)形結(jié)合的數(shù)學(xué)思想,考查了學(xué)生解決問(wèn)題的能力和運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•武昌區(qū)模擬)球面上有3個(gè)點(diǎn),其中任意兩點(diǎn)的球面距離都等于大圓周長(zhǎng)的
1
6
,經(jīng)過(guò)這3點(diǎn)的小圓周長(zhǎng)為4π,那么這個(gè)球的體積為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•武昌區(qū)模擬)一個(gè)口袋中裝有4個(gè)紅球和5個(gè)白球,一次摸獎(jiǎng)從中摸兩個(gè)球,兩個(gè)球顏色不同則中獎(jiǎng).
(Ⅰ)試求一次摸獎(jiǎng)中獎(jiǎng)的概率P;
(Ⅱ)求三次摸獎(jiǎng)(每次摸獎(jiǎng)后放回)中獎(jiǎng)次數(shù)ξ的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•武昌區(qū)模擬)設(shè)函數(shù)f(x)=px-
q
x
-2lnx
,且f(e)=qe-
p
e
-2
,其中p≥0,e是自然對(duì)數(shù)的底數(shù).
(1)求p與q的關(guān)系;
(2)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求p的取值范圍.
(3)設(shè)g(x)=
2e
x
.若存在x0∈[1,e],使得f(x0)>g(x0)成立,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•武昌區(qū)模擬)
lim
x→0
=
ex-1
x
=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•武昌區(qū)模擬)2010年兩會(huì)記者招待會(huì)上,主持人要從5名中國(guó)記者與4名外主國(guó)記者中選出3名進(jìn)行提問(wèn),要求3人中既有國(guó)內(nèi)記者又有國(guó)外記者,且國(guó)內(nèi)記者不能連續(xù)提問(wèn),則不同的提問(wèn)方式的種數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案