如圖,四棱錐PABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分別為PB,AB,BC,PD,PC的中點

(1)求證:CE∥平面PAD;
(2)求證:平面EFG⊥平面EMN.
(1)見解析  (2)見解析

證明:(1)取PA的中點H,連接EH,DH.

因為E為PB的中點,
所以EH∥AB,EH=AB.
又AB∥CD,CD=AB,
所以EH∥CD,EH=CD.
因此四邊形DCEH是平行四邊形.
所以CE∥DH.
又DH?平面PAD,CE?平面PAD,
因此CE∥平面PAD.
(2)因為E,F分別為PB,AB的中點,
所以EF∥PA.
又AB⊥PA,
所以AB⊥EF,
同理可證AB⊥FG.
又EF∩FG=F,EF?平面EFG,FG?平面EFG,
因此AB⊥平面EFG.
又M,N分別為PD,PC的中點,
所以MN∥CD,又AB∥CD,
所以MN∥AB,
因此MN⊥平面EFG,
又MN?平面EMN,
所以平面EFG⊥平面EMN.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐SABCD的底面是正方形,每條側(cè)棱的長都是底面邊長的倍,P為側(cè)棱SD上的點.

(1)求證:AC⊥SD;
(2)若SD⊥平面PAC,求二面角PACD的大小;
(3)在(2)的條件下,側(cè)棱SC上是否存在一點E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)m、n是兩條不同的直線,、是兩個不同的平面,則
A.若m//,n//,則m//nB.若m//,m//,則//
C.若m//n,m,則nD.若m//,,則m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正方體中,下列幾種說法錯誤的是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

表示不同直線,M表示平面,給出四個命題:①若∥M,∥M,則 或相交或異面;②若M,,則∥M;③,,則;④ ⊥M,⊥M,則。其中正確命題為
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在三棱錐PABC中,,,,則兩直線PCAB所成角的大小是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出下列命題:
①若一個平面經(jīng)過另一個平面的垂線,那么這兩個平面相互垂直;
②若一個平面內(nèi)的兩條直線與另一個平面都平行,那么這兩個平面相互平行;
③若兩條平行直線中的一條垂直于直線m,那么另一條直線也與直線m垂直;
④若兩個平面垂直,那么一個平面內(nèi)與它們的交線不垂直的直線與另一個平面也不垂直.
其中,真命題是________.(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知l,m是兩條不同的直線,α、β是兩個不同的平面,有下列四個命題:
①若lβ,且α⊥β,則l⊥α;
②若l⊥β,且α∥β,則l⊥α;
③若l⊥β,且α⊥β,則l∥α;
④若α∩β=m,且l∥m,則l∥α.
則所有正確的命題是________.(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,在三棱錐A-BCD中,E,F(xiàn),G,H分別是棱AB,BC,CD,DA的中點,則

(1)當AC,BD滿足條件________時,四邊形EFGH為菱形;
(2)當AC,BD滿足條件________時,四邊形EFGH是正方形.

查看答案和解析>>

同步練習(xí)冊答案