9.雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一條漸近線與直線x+2y+1=0垂直,F(xiàn)1,F(xiàn)2為C的焦點(diǎn),A為雙曲線上一點(diǎn),若|F1A|=2|F2A|,則cos∠AF2F1=$\frac{{\sqrt{5}}}{5}$.

分析 由兩直線垂直的條件可得漸近線的斜率為2,即有b=2a,再求c=$\sqrt{5}$a,運(yùn)用雙曲線的定義和條件,解得三角形
AF2F1的三邊,再由余弦定理,即可得到所求值.

解答 解:由于雙曲線的一條漸近線y=$\frac{a}$x與直線x+2y+1=0垂直,
則一條漸近線的斜率為2,
即有b=2a,c=$\sqrt{5}$a,
|F1A|=2|F2A|,且由雙曲線的定義,可得|F1A|-|F2A|=2a,
解得,|F1A|=4a,|F2A|=2a,
又|F1F2|=2c,由余弦定理,可得
cos∠AF2F1=$\frac{4{a}^{2}+4×5{a}^{2}-16{a}^{2}}{2×2a×2\sqrt{5}a}$=$\frac{{\sqrt{5}}}{5}$,
故答案為$\frac{{\sqrt{5}}}{5}$.

點(diǎn)評(píng) 本題考查雙曲線的定義和性質(zhì),考查兩直線的垂直的條件及余弦定理的運(yùn)用,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}-mx+m-1\;,\;x≥0\\ f({x+2})\;,\;x<0\end{array}\right.$.
(Ⅰ)當(dāng)m=8時(shí),求f(-4)的值;
(Ⅱ)當(dāng)m=8且x∈[-8,8]時(shí),求|f(x)|的最大值;
(Ⅲ)對(duì)任意的實(shí)數(shù)m∈[0,2],都存在一個(gè)最大的正數(shù)K(m),使得當(dāng)x∈[0,K(m)]時(shí),不等式|f(x)|≤2恒成立,求K(m)的最大值以及此時(shí)相應(yīng)的m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且a1=a2=1,{nSn+(n+2)an}為等差數(shù)列,則a2017=2017•2-2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求滿足下列條件的橢圓的標(biāo)準(zhǔn)方程.
(1)長(zhǎng)軸與短軸的和為18,焦距為6;
(2)焦點(diǎn)在x軸上過點(diǎn)(0,2),長(zhǎng)軸長(zhǎng)為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,$AC=\sqrt{7},BC=2,B=60°$,則BC邊上的高為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{3\sqrt{3}}}{2}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.空間四邊形ABCD中,E、F分別為AC、BD中點(diǎn),若CD=2AB,EF⊥AB,則直線EF與CD所成的角的度數(shù)為30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)滿足對(duì)于任意實(shí)數(shù)x,都有f(-x)=f(x),且當(dāng)x1,x2∈[0,+∞),x1≠x2時(shí),$\frac{{f({x_1})-f({x_2})}}{{{x_1}-x}}>0$都成立,則下列結(jié)論正確的是(  )
A.f(-2)>f(0)>f(1)B.f(-2)>f(1)>f(0)C.f(1)>f(0)>f(-2)D.f(1)>f(-2)>f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.現(xiàn)有四個(gè)函數(shù):①y=x•sinx,②y=x•cosx,③y=x•|cosx|,④y=x•2x 的部分圖象如圖,但順序被打亂,則按照從左到右將圖象對(duì)應(yīng)的函數(shù)序號(hào)正確的排列是①④②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}y-1≥0\\ y-1≤2(x-1)\\ x+y-5≤0\end{array}\right.$,目標(biāo)函數(shù)z=x-y的最小值為-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案