已知函數(shù).
(1)當(dāng)時,求的值域;
(2)當(dāng),時,函數(shù)的圖象關(guān)于對稱,求函數(shù)的對稱軸;
(3)若圖象上有一個最低點,如果圖象上每點縱坐標(biāo)不變,橫坐標(biāo)縮短到原來的倍,然后向左平移1個單位可得的圖象,又知的所有正根從小到大依次為,…,…且,求的解析式.

(1)①當(dāng)時,值域為:; ② 當(dāng)時,值域為:;(2);(3)

解析試題分析:(1)利用正弦函數(shù)的值域和不等式性質(zhì)即可求出的值域,主要要分0兩種情況;(2)先由對稱軸過最值點列出關(guān)于的方程,求出,然后將函數(shù)利用設(shè)輔助角公式化為一個角的三角函數(shù),再利用求對稱軸的方法求出對稱軸;(3)先由設(shè)輔助角公式將函數(shù)化成一個角的三角函數(shù),利用過最低點,求出輔助角并將表示出來,即求出的解析式,再根據(jù)題中的圖像變換求出的解析式,再根據(jù)題中已知條件的所有正根從小到大依次為,,…,…且確定參數(shù),即可得到的解析式.
試題解析:(1)當(dāng)時,
①當(dāng)時,值域為:     ② 當(dāng)時,值域為:
(2)當(dāng),時,且圖象關(guān)于對稱。
    ∴函數(shù)即:  由
∴函數(shù)的對稱軸為:
(3)由
(其中
圖象上有一個最低點,所以
    ∴
又圖象上每點縱坐標(biāo)不變,橫坐標(biāo)縮短到原來的倍,然后向左平移1個單位可得的圖象,則
又∵的所有正根從小到大依次為,…,…,且
所以與直線的相鄰交點間的距離相等,根據(jù)三角函數(shù)的圖象與性質(zhì)可得以下情況:
(1)直線要么過的最高點或最低點.
(矛盾),

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差列的前n項和為
(1)求數(shù)列的通項公式:
(2)若函數(shù)處取得最大值,且最大值為a2,求函數(shù)的解析式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的最小正周期和單調(diào)遞減區(qū)間;
(2)在中,分別是角A、B、C的對邊,若,求 面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
(1)求的最小正周期;
(2)求在閉區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
(1)求函數(shù)的最小正周期;
(2)求函數(shù)在區(qū)間上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的最小正周期及單調(diào)遞減區(qū)間;
(2)若將函數(shù)的圖像向右平移個單位,得到函數(shù)的圖像,求在區(qū)間上的最大值和最小值,并求出相應(yīng)的x的取值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知向量,,設(shè)函數(shù),且的圖象過點和點.
(Ⅰ)求的值;
(Ⅱ)將的圖象向左平移)個單位后得到函數(shù)的圖象.若的圖象上各最高點到點的距離的最小值為1,求的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

(2010年蘇州調(diào)研)已知tanx=sin(x+),則sinx=______________.

查看答案和解析>>

同步練習(xí)冊答案