(14分)如圖,圓柱內(nèi)有一個(gè)三棱柱,三棱柱的 底面為圓柱
底面的內(nèi)接三角形,且是圓的直徑。
(I)證明:平面平面;
(II)設(shè),在圓柱內(nèi)隨機(jī)選取一點(diǎn),記該點(diǎn)取自三棱柱內(nèi)的概率為。
(i)當(dāng)點(diǎn)在圓周上運(yùn)動(dòng)時(shí),求的最大值;
(ii)如果平面與平面所成的角為。當(dāng)取最大值時(shí),求的值。
解:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052502065800003884/SYS201205250208465312266218_DA.files/image001.png">平面ABC,平面ABC,所以,
因?yàn)锳B是圓O直徑,所以,又,所以平面,
而平面,所以平面平面。
(Ⅱ)(i)設(shè)圓柱的底面半徑為,則AB=,故三棱柱的體積為
=,
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052502065800003884/SYS201205250208465312266218_DA.files/image016.png">,
所以=,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,
從而,而圓柱的體積,
故=當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,
所以的最大值是。
(ii)由(i)可知,取最大值時(shí),,于是以O(shè)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系(如圖),則C(r,0,0),B(0,r,0),(0,r,2r),
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052502065800003884/SYS201205250208465312266218_DA.files/image004.png">平面,所以是平面的一個(gè)法向量,
設(shè)平面的法向量,
由,故,
取得平面的一個(gè)法向量為,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052502065800003884/SYS201205250208465312266218_DA.files/image035.png">,
所以。
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,圓柱內(nèi)有一個(gè)三棱柱,三棱柱的底面在圓柱底面內(nèi),并且底面是正三角形,如果圓柱的體積是,底面直徑與母線長(zhǎng)相等,那么三棱柱的體積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年福建省莆田一中高二上學(xué)期第一學(xué)段考試數(shù)學(xué) 題型:解答題
( 12分)如圖,圓柱內(nèi)有一個(gè)三棱柱,三棱柱的底面為圓柱底面的內(nèi)接三角形,且是圓的直徑。
(1)求證:平面
(2)設(shè),在圓柱內(nèi)隨機(jī)選取一個(gè)點(diǎn),記該點(diǎn)取自三棱
柱的概率為
(i)當(dāng)點(diǎn)C在圓周上運(yùn)動(dòng)時(shí),求的最大值;
(ii)記平面與平面所成的角為,當(dāng)
取最大值時(shí),求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆湖北省高二上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分13分)如圖,圓柱內(nèi)有一個(gè)三棱柱,三棱柱的底面為圓柱底面的內(nèi)接三角形,且AB是圓O直徑.
(Ⅰ)證明:平面平面;
(Ⅱ)設(shè),在圓柱內(nèi)隨機(jī)選取一點(diǎn),記該點(diǎn)取自于三棱柱內(nèi)的概率為.
(。┊(dāng)點(diǎn)C在圓周上運(yùn)動(dòng)時(shí),求的最大值;
(ii)記平面與平面所成的角為,當(dāng)取最大值時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年高考試題(福建卷)解析版(理) 題型:解答題
如圖,圓柱內(nèi)有一個(gè)三棱柱,三棱柱的底面為圓柱底面的內(nèi)接三角形,且AB是圓O直徑。
(Ⅰ)證明:平面平面;
(Ⅱ)設(shè)AB=,在圓柱內(nèi)隨機(jī)選取一點(diǎn),記該點(diǎn)取自于三棱柱內(nèi)的概率為。
(i)當(dāng)點(diǎn)C在圓周上運(yùn)動(dòng)時(shí),求的最大值;
(ii)記平面與平面所成的角為,當(dāng)取最大值時(shí),求的值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com