精英家教網 > 高中數學 > 題目詳情
已知集合A={y|y=|x|-1,x∈R},B={x|x≥2},則下列結論正確的是(  )
A、-3∈AB、3∉BC、A∩B=BD、A∪B=B
考點:元素與集合關系的判斷
專題:集合
分析:先求出集合A,從而找出正確選項.
解答:解:∵|x|≥0,∴|x|-1≥-1;
∴A={y|y≥-1},又B={x|x≥2}
∴A∩B={x|x≥2}=B.
故選C.
點評:注意描述法所表示集合的元素.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

若X是一個集合,集合v是一個以X的某些子集為元素的集合,且滿足:
(1)X∈v,空集∅∈v;
(2)v中任意多個元素的并集屬于v;
(3)v中任意多個元素的交集屬于v;稱v是集合X上的一個拓撲.
已知集合X={a,b,c},對于下列給出的四個集合v:
①v={∅,{a},{c},{a,b,c}};
②v={∅,,{c},{b,c},{a,b,c}};
③v={∅,{a},{a,b},{a,c}};
④v={∅,{a,c},{b,c},{c},{a,b,c}}.
則其中是集合X上的拓撲的集合v的序號是(  )
A、①③B、③④C、①②D、②④

查看答案和解析>>

科目:高中數學 來源: 題型:

對于集合A,如果定義了一種運算“⊕”,使得集合A中的元素間滿足下列4個條件:
(Ⅰ)?a,b∈A,都有a⊕b∈A
(Ⅱ)?e∈A,使得對?a∈A,都有a⊕a=a⊕e=a;
(Ⅲ)?a∈A,?a′∈A,使得a⊕a′=a′⊕a=e;
(Ⅳ)?a,b,c∈A,都有(a⊕b)⊕c=a⊕(b⊕c),
則稱集合A對于運算“⊕”構成“對稱集”.下面給出三個集合及相應的運算“⊕”:
①A={整數},運算“⊕”為普通加法;
②A={復數},運算“⊕”為普通減法;
③A={正實數},運算“⊕”為普通乘法.
其中可以構成“對稱集”的有(  )
A、①②B、①③C、②③D、①②③

查看答案和解析>>

科目:高中數學 來源: 題型:

下列各組對象中,能構成集合的是( 。
(1)比較小的正整數的全體;(2)一切很大的數;(3)自然數;(4)正三角形的全體.
A、(1)(2)B、(2)(3)C、(1)(4)D、(3)(4)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合A={y丨y=x2-2x+2,x∈R},B={y丨y=x2+2x+2,x∈A},則集合B=
 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

若圓在矩陣對應的變換下變成橢圓求矩陣的逆矩陣.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

函數的最小正周期=____________.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

若行列式,則         .

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

運用旋轉矩陣,求直線2x+y-1=0繞原點逆時針旋轉45°后所得的直線方程.

查看答案和解析>>

同步練習冊答案