(本小題滿分12分)袋中裝著標(biāo)有數(shù)字1,2,3,4,5的小球各2個(gè),從袋中任取3個(gè)小球,按3個(gè)小球上最大數(shù)字的9倍計(jì)分,每個(gè)小球被取出的可能性都相等,用表示取出的3個(gè)小球上的最大數(shù)字,求:
(Ⅰ)取出的3個(gè)小球上的數(shù)字互不相同的概率;
(Ⅱ)隨機(jī)變量的分布列和數(shù)學(xué)期望;
(Ⅲ)計(jì)分介于20分到40分之間的概率

(Ⅰ)(Ⅱ)所以隨機(jī)變量ξ的分布列為

ξ
2
3
4
5





(Ⅲ)

解析試題分析:(Ⅰ)解法一:“一次取出的3個(gè)小球上的數(shù)字互不相同”的事件記為

解法二:“一次取出的3個(gè)小球上的數(shù)字互不相同的事件記為A”,“一次取出的3個(gè)小球上有兩個(gè)數(shù)字相同”的事件記為,則事件和事件是互斥事件,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9c/c/l9eps1.png" style="vertical-align:middle;" />
所以 .                                       ……3分
(Ⅱ)由題意有可能的取值為:2,3,4,5




所以隨機(jī)變量ξ的分布列為

ξ
2
3
4
5





因此的數(shù)學(xué)期望為
.                             ……9分
(Ⅲ)“一次取球所得計(jì)分介于20分到40分之間”的事件記為,則

……12分
考點(diǎn):本小題主要考查離散型隨機(jī)變量的分布列、期望等的求解,考查學(xué)生分析問題、解決問題的能力和運(yùn)算求解能力.
點(diǎn)評(píng):解決此類問題要注意判準(zhǔn)事件的性質(zhì),根據(jù)事件的性質(zhì)識(shí)別概率模型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如下圖,用A、B、C三類不同的元件連接兩個(gè)系統(tǒng)N1,N2,當(dāng)元件A、B、C都正常工作時(shí)系統(tǒng)N1正常工作,當(dāng)元件A正常工作且元件B、C至少有一個(gè)正常工作時(shí)系統(tǒng)N2正常工作,已知元件A、B、C正常工作的概率分別為0.80,0.90,0.90,分別求系統(tǒng)N1,N2正常工作的概率p1,p2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

二十世紀(jì)50年代,日本熊本縣水俁市的許多居民都患了運(yùn)動(dòng)失調(diào)、四肢麻木等癥狀,人們把它稱為水俁。(jīng)調(diào)查發(fā)現(xiàn)一家工廠排出的廢水中含有甲基汞,使魚類受到污染.人們長(zhǎng)期食用含高濃度甲基汞的魚類引起汞中毒. 引起世人對(duì)食品安全的關(guān)注.《中華人民共和國(guó)環(huán)境保護(hù)法》規(guī)定食品的汞含量不得超過(guò)1.00ppm.
羅非魚是體型較大,生命周期長(zhǎng)的食肉魚,其體內(nèi)汞含量比其他魚偏高.現(xiàn)從一批羅非魚中隨機(jī)地抽出15條作樣本,經(jīng)檢測(cè)得各條魚的汞含量的莖葉圖(以小數(shù)點(diǎn)前一位數(shù)字為莖,小數(shù)點(diǎn)后一位數(shù)字為葉)如下:
 
(Ⅰ)若某檢查人員從這15條魚中,隨機(jī)地抽出3條,求恰有1條魚汞含量超標(biāo)的概率;
(Ⅱ)以此15條魚的樣本數(shù)據(jù)來(lái)估計(jì)這批魚的總體數(shù)據(jù).若從這批數(shù)量很大的魚中任選3條魚,記ξ表示抽到的魚汞含量超標(biāo)的條數(shù),求ξ的分布列及Eξ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

盒中有6只燈泡,其中有2只是次品,4只是正品.從中任取2只,試求下列事件的概率.
(Ⅰ)取到的2只都是次品;    
(Ⅱ)取到的2只中恰有一只次品.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

公安部發(fā)布酒后駕駛處罰的新規(guī)定(一次性扣罰12分)已于2011年4月1日起正式施行.酒后違法駕駛機(jī)動(dòng)車的行為分成兩個(gè)檔次:“酒后駕車”和“醉酒駕車”,其檢測(cè)標(biāo)準(zhǔn)是駕駛?cè)藛T血液中的酒精含量(簡(jiǎn)稱血酒含量,單位是毫克/100毫升),當(dāng)時(shí),為酒后駕車;當(dāng)時(shí),為醉酒駕車.某市公安局交通管理部門在某路段的一次攔查行動(dòng)中,依法檢查了200輛機(jī)動(dòng)車駕駛員的血酒含量(如下表).
依據(jù)上述材料回答下列問題:
(Ⅰ)分別寫出酒后違法駕車發(fā)生的頻率和酒后違法駕車中醉酒駕車的頻率;
(Ⅱ)從酒后違法駕車的司機(jī)中,抽取2人,請(qǐng)一一列舉出所有的抽取結(jié)果,并求取到的2人中含有醉酒駕車的概率. (酒后駕車的人用大寫字母如表示,醉酒駕車的人用小寫字母如表示)

血酒含量
(0,20)
[20,40)
[40,60)
[60,80)
[80,100)
[100,120]
人數(shù)
194
1
2
1
1
1
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

甲、乙、丙三人獨(dú)立地對(duì)某一技術(shù)難題進(jìn)行攻關(guān)。甲能攻克的概率為,乙能攻克的概率為,丙能攻克的概率為.
(1)求這一技術(shù)難題被攻克的概率;
(2)若該技術(shù)難題末被攻克,上級(jí)不做任何獎(jiǎng)勵(lì);若該技術(shù)難題被攻克,上級(jí)會(huì)獎(jiǎng)勵(lì)萬(wàn)元。獎(jiǎng)勵(lì)規(guī)則如下:若只有1人攻克,則此人獲得全部獎(jiǎng)金萬(wàn)元;若只有2人攻克,則獎(jiǎng)金獎(jiǎng)給此二人,每人各得萬(wàn)元;若三人均攻克,則獎(jiǎng)金獎(jiǎng)給此三人,每人各得萬(wàn)元。設(shè)甲得到的獎(jiǎng)金數(shù)為X,求X的分布列和數(shù)學(xué)期望。(本題滿分12分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)一個(gè)口袋內(nèi)裝有大小相同的5 個(gè)球,其中3個(gè)白球分別記為A1、A2、A3;2個(gè)黑球分別記為B1、B2,從中一次摸出2個(gè)球.
(Ⅰ)寫出所有的基本事件;
(Ⅱ)求摸出2球均為白球的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分13分) 已知關(guān)于x的二次函數(shù)
(1)設(shè)集合,從集合中隨機(jī)取一個(gè)數(shù)作為,從中隨機(jī)取一個(gè)數(shù)作為,求函數(shù)在區(qū)間上是增函數(shù)的概率;
(2)設(shè)點(diǎn)是區(qū)域內(nèi)的隨機(jī)點(diǎn),求函數(shù)在區(qū)間上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

高校招生是根據(jù)考生所填報(bào)的志愿,從考試成績(jī)所達(dá)到的最高第一志愿開始,按順序分批錄取,若前一志愿不能錄取,則依次給下一個(gè)志愿(同批或下一批)錄取.某考生填報(bào)了三批共6個(gè)不同志愿(每批2個(gè)),并對(duì)各志愿的單獨(dú)錄取以及能考上各批分?jǐn)?shù)線的概率進(jìn)行預(yù)測(cè),結(jié)果如“表一”所示(表中的數(shù)據(jù)為相應(yīng)的概率,a、b分別為第一、第二志愿).

(Ⅰ)求該考生能被第2批b志愿錄取的概率;
(Ⅱ)求該考生能被錄取的概率;
(Ⅲ)如果已知該考生高考成績(jī)已達(dá)到第2批分?jǐn)?shù)線卻未能達(dá)到第1批分?jǐn)?shù)線,請(qǐng)計(jì)算其最有可能在哪個(gè)志愿被錄。
(以上結(jié)果均保留二個(gè)有效數(shù)字)

查看答案和解析>>

同步練習(xí)冊(cè)答案