(理科做)如圖,已知棱長為a的正方體ABCD-A1B1C1D1中,P是棱AA1上的一點,且A1P:PA=m:n.
(I)在AB上找出一點Q,使C1P⊥PQ;
(II)求當C1P⊥PQ時,線段AQ的長.
分析:(I)直接設出A1P=x,AP=1-x,AQ=y;根據(jù)直角三角形求出RT△C1PQ三邊長,結合勾股定理即可求出點Q所滿足的條件;
(II)直接由第一問的結論即可得到線段AQ的長.
解答:解:(I)設A1P=x,AP=1-x,AQ=y.
x
1-x
=
m
n
⇒x=
m
m+n
,AP=
n
m+n

∴C1P=
A1C12+A1P2
=
(
2
)
2
x2
=
2+(
m
m+n
)
2
;
PQ=
AP 2+AQ2
=
(
n
m+n
) 2+y 2
;
C1Q=
CC 12+CQ 2
=
CC 12+CB 2+BQ 2
=
12+12+(1-y) 2
;
因為C1P⊥PQ,
C 1P2+PQ 2=C 1Q2⇒2+(
m
m+n
)
2
+(
n
m+n
) 2
+y2=2+(1-y)2⇒y=
mn
(m+n) 2
;
∴當AQ=
mn
(m+n) 2
時C1P⊥PQ;
(II)由第一問得:AQ=
mn
(m+n) 2
點評:本題是中檔題,考查直角三角形的利用以及長方體的性質,考查計算能力.解決本題的關鍵在于利用勾股定理求出AQ的長.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,以該橢圓上的點和橢圓的左、右焦點F1,F(xiàn)2為頂點的三角形的周長為4(
2
+1),一等軸雙曲線的頂點是該橢圓的焦點,設P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D.
(Ⅰ)求橢圓和雙曲線的標準方程;
(Ⅱ)設直線PF1、PF2的斜率分別為k1、k2,證明k1•k2=1;
(Ⅲ)(此小題僅理科做)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)(理科做)如圖所示已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD且PA=1.建立適當?shù)目臻g坐標系,利用空間向量求解下列問題:
(1)求點P、B、D的坐標;
(2)當實數(shù)a在什么范圍內取值時,BC邊上存在點Q,使得PQ⊥QD;
(3)當BC邊上有且僅有一個Q點,使得時PQ⊥QD,求二面角Q-PD-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:《立體幾何》2010年同步練習B(廣州市)(理科)(解析版) 題型:解答題

(理科做)如圖所示已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD且PA=1.建立適當?shù)目臻g坐標系,利用空間向量求解下列問題:
(1)求點P、B、D的坐標;
(2)當實數(shù)a在什么范圍內取值時,BC邊上存在點Q,使得PQ⊥QD;
(3)當BC邊上有且僅有一個Q點,使得時PQ⊥QD,求二面角Q-PD-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年江蘇省淮安市清江中學高二(上)期末數(shù)學試卷(解析版) 題型:解答題

(理科做)如圖所示已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD且PA=1.建立適當?shù)目臻g坐標系,利用空間向量求解下列問題:
(1)求點P、B、D的坐標;
(2)當實數(shù)a在什么范圍內取值時,BC邊上存在點Q,使得PQ⊥QD;
(3)當BC邊上有且僅有一個Q點,使得時PQ⊥QD,求二面角Q-PD-A的余弦值.

查看答案和解析>>

同步練習冊答案