14.口袋中有形狀大小都相同的2只白球和1只黑球.先從口袋中摸出1只球,記下顏色后放回口袋,然后再摸出1只球,則出現(xiàn)“1只白球,1只黑球”的概率為$\frac{4}{9}$.

分析 先求出基本事件總數(shù)和出現(xiàn)“1只白球,1只黑球”包含的基本事件個(gè)數(shù),由此能求出出現(xiàn)“1只白球,1只黑球”的概率.

解答 解:口袋中有形狀大小都相同的2只白球和1只黑球.先從口袋中摸出1只球,記下顏色后放回口袋,然后再摸出1只球,
基本事件總數(shù)n=3×3=9,
出現(xiàn)“1只白球,1只黑球”包含的基本事件個(gè)數(shù)m=2×1+1×2=4,
∴出現(xiàn)“1只白球,1只黑球”的概率為p=$\frac{4}{9}$.
故答案為:$\frac{4}{9}$.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等可能事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.集合A={x∈N|x2-4x-5<0},B={x|log2(x-2)≤1},則A∩B=(  )
A.(-1,4]B.(2,4]C.(3,4)D.{3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,$\overrightarrow{a}$-$\overrightarrow$=($\sqrt{3}$,$\sqrt{2}$),則|2$\overrightarrow{a}$+$\overrightarrow$|=( 。
A.2$\sqrt{2}$B.$\sqrt{17}$C.$\sqrt{15}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.函數(shù)f(x)=3sin(2x+π)是( 。
A.周期為2π的奇函數(shù)B.周期為2π的偶函數(shù)
C.周期為π的奇函數(shù)D.周期為π的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.下列說(shuō)法正確的是②.(填上所有正確命題的序號(hào))
①空間三點(diǎn)確定一個(gè)平面
②兩條相交直線確定一個(gè)平面
③一點(diǎn)和一條直線確定一個(gè)平面
④一條直線與兩條平行線中的一條相交,則必與另一條相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知向量m$\overrightarrow{m}$(sin$\frac{x}{2}$,1),$\overrightarrow{n}$=(1,$\sqrt{3}$cos$\frac{x}{2}$),函數(shù)f(x)=$\overrightarrow{m}•\overrightarrow{n}$???
(1)求函數(shù)f(x)的最小正周期;
(2)若f(α-$\frac{2π}{3}$)=$\frac{2}{3}$,求f(2α+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知sin($\frac{3π}{2}$-θ)+3cos(π-θ)=sin(-θ),則sinθcosθ+cos2θ=(  )
A.-$\frac{1}{5}$B.$\frac{1}{5}$C.$\frac{3}{5}$D.$\frac{5}{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知甲,乙兩輛車(chē)去同一貨場(chǎng)裝貨物,貨場(chǎng)每次只能給一輛車(chē)裝貨物,所以若兩輛車(chē)同時(shí)到達(dá),則需要有一車(chē)等待.已知甲、乙兩車(chē)裝貨物需要的時(shí)間都為30分鐘,倘若甲、乙兩車(chē)都在某1小時(shí)內(nèi)到達(dá)該貨場(chǎng),則至少有一輛車(chē)需要等待裝貨物的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}滿足:a1=1,an=$\left\{\begin{array}{l}{2{a}_{\frac{n}{2}}+1,n為偶數(shù)}\\{\frac{1}{2}+2{a}_{\frac{n-1}{2}},n為奇數(shù)}\end{array}\right.$,n=2,3,4,….
(1)求a2,a3,a4,a5的值;
(2)設(shè)bn=${a}_{{2}^{n-1}}$+1,n∈N*,求證:數(shù)列{bn}是等比數(shù)列,并求出其通項(xiàng)公式;
(3)對(duì)任意的m≥2,m∈N*,在數(shù)列{an}中是否存在連續(xù)的2m項(xiàng)構(gòu)成等差數(shù)列?若存在,寫(xiě)出這2m項(xiàng),并證明這2m項(xiàng)構(gòu)成等差數(shù)列;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案