10.已知函數(shù)f(x)=2x的值域?yàn)锳,g(x)=lnx的定義域?yàn)锽,則( 。
A.A∩B=(0,1)B.A∪B=RC.B?AD.A=B

分析 求出f(x)的定義域,g(x)的值域,確定出A=B,

解答 解:函數(shù)f(x)=2x的值域?yàn)锳=(0,+∞),
g(x)=lnx的定義域?yàn)锽=(0,+∞),
∴A=B,
故選:D

點(diǎn)評 此題考查了對數(shù)函數(shù)的定義域和指數(shù)函數(shù)的值域,以及兩集合的關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(1)已知角α終邊上一點(diǎn)P(-4,3),求$\frac{{cos(\frac{π}{2}+α)sin(-π-α)}}{{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}}$的值.
(2)設(shè)k為整數(shù),化簡$\frac{sin(kπ-α)cos[(k+1)π-α]}{sin[(k-1)π+α]cos(kπ+α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,拋物線y2=2px(p>0)和圓x2+y2-px=0,直線l經(jīng)過拋物線的焦點(diǎn),依次交拋物線與圓于A,B,C,D四點(diǎn),|AB|•|CD|=2則p的值為( 。
A.$\frac{\sqrt{2}}{2}$B.1C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=4cosθ.
(1)求出圓C的直角坐標(biāo)方程;
(2)已知圓C與x軸相交于A,B兩點(diǎn),直線l:y=2x關(guān)于點(diǎn)M(0,m)(m≠0)對稱的直線為l'.若直線l'上存在點(diǎn)P使得∠APB=90°,求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)實(shí)數(shù)x,y滿足不等式$\left\{\begin{array}{l}{x+y-1≥0}\\{x-2y+2≥0}\\{2x-y-2≤0}\end{array}\right.$,目標(biāo)函數(shù)z=ax+y的最大值不大于3a,則實(shí)數(shù)a的取值范圍為a≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.f(x)是定義在(0,+∞)上的單調(diào)函數(shù),且對?x∈(0,+∞)都有f(f(x)-lnx)=e+1,則方程f(x)-f′(x)=e的實(shí)數(shù)解所在的區(qū)間是( 。
A.(0,$\frac{1}{e}$)B.($\frac{1}{e}$,1)C.(1,e)D.(e,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知命題p:“?x∈R,使”4x+2x+1-m=0”,若“¬p”為假命題,則實(shí)數(shù)m的取值范圍是(  )
A.(-1,+∞)B.(0,+∞)C.[0,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>1)的焦距為2,過短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)的圓的面積為$\frac{4}{3}$π,過橢圓C的右焦點(diǎn)作斜率為k(k≠0)的直線l與橢圓C相交于A、B兩點(diǎn),線段AB的中點(diǎn)為P.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)P垂直于AB的直線與x軸交于點(diǎn)D($\frac{1}{7}$,0),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.二項(xiàng)式(1+2x)4展開式的各項(xiàng)系數(shù)的和為( 。
A.81B.80C.27D.26

查看答案和解析>>

同步練習(xí)冊答案