在極坐標(biāo)系中,圓ρ=-4cosθ的圓心極坐標(biāo)為
(2,π)
(2,π)
分析:把圓的極坐標(biāo)方程化為直角坐標(biāo)方程,求出圓心的直角坐標(biāo),再把它化為極坐標(biāo).
解答:解:圓ρ=-4cosθ 即ρ2=-4ρcosθ,即 x2+y2+4x=0,即 (x+2)2+y2=4,表示以(-2,0)為圓心,半徑等于2的圓.
而點(-2,0)的極坐標(biāo)為(2,π),
故答案為:(2,π).
點評:本題主要考查極坐標(biāo)方程與直角坐標(biāo)方程的互化,求點的極坐標(biāo),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽)在極坐標(biāo)系中,圓ρ=4sinθ的圓心到直線θ=
π
6
(ρ∈R)的距離是
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湛江模擬)(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,圓ρ=4
3
cosθ
的圓心到直線θ=
π
3
(ρ∈R)
的距離是
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程)在極坐標(biāo)系中,圓ρ=2cosθ的圓心C到直線ρcosθ=4的距離是
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泰州二模)在極坐標(biāo)系中,圓C1的方程為ρ=4
2
cos(θ-
π
4
)
,以極點為坐標(biāo)原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,圓C2的參數(shù)方程
x=-1-acosθ
y=-1+asinθ
(θ是參數(shù)),若圓C1與圓C2相切,求實數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊答案