8.在等差數(shù)列{an}中,a1=-2011,其前n項(xiàng)的和為Sn.若$\frac{{S}_{2010}}{2010}$-$\frac{{S}_{2008}}{2008}$=2,則S2011=( 。
A.-2010B.2010C.2011D.-2011

分析 Sn是等差數(shù)列的前n項(xiàng)和,可得數(shù)列$\left\{{\frac{S_n}{n}}\right\}$是首項(xiàng)為a1的等差數(shù)列,利用通項(xiàng)公式即可得出.

解答 解:∵Sn是等差數(shù)列的前n項(xiàng)和,∴數(shù)列$\left\{{\frac{S_n}{n}}\right\}$是首項(xiàng)為a1的等差數(shù)列;
由$\frac{{S}_{2010}}{2010}$-$\frac{{S}_{2008}}{2008}$=2,則該數(shù)列公差為1,
∴$\frac{{S}_{2011}}{2011}$=-2011+(2011-1)=-1,
∴S2011=-2011.
故選:D.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式及其求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)平面內(nèi)有與兩定點(diǎn)A1(-2,0),A2(2,0)連接的斜率之積等于-$\frac{1}{4}$的點(diǎn)的軌跡,A1,A2兩點(diǎn)所成的曲線為C.
(1)求曲線C的方程;
(2)設(shè)直線l經(jīng)過曲線C的一個(gè)焦點(diǎn),直線l與曲線C相交于A,B兩點(diǎn),求證:|AB|min=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)解不等式:$\sqrt{x-1}$+2x≤5
(2)解關(guān)于x的不等式:$\frac{ax-1}{x-2}$>$\frac{a}{2}$(a∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知向量$\overrightarrow{a}$=(5cosα,4),$\overrightarrow$=(3,4tanα),其中α∈($\frac{π}{2}$,π).
(1)若$\overrightarrow{a}$∥$\overrightarrow$,求sin2α的值;
(2)若|$\overrightarrow{a}$|=5,向量$\overrightarrow{c}$=(2,0),求證:($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{c}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=2lnx+$\frac{a}{2}$x2-(2a+1)x.
(1)當(dāng)a=1時(shí),求f(x)在(1,f(1))處的切線方程;
(2)若a>0,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若M={x|log2x≤1},N={x|x2-2x≤0},則“f(x)>0在x∈M上恒成立”是“f(x)>0在x∈N上恒成立”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要的條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知$\overrightarrow{BA}$=($\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),$\overrightarrow{BC}$=($\frac{{\sqrt{3}}}{2}$,$\frac{1}{2}$),則<$\overrightarrow{BA}$,$\overrightarrow{BC}$>=( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.盒中有大小相同的5個(gè)白球和3個(gè)黑球,從中隨機(jī)摸出3個(gè)球,記摸到黑球的個(gè)數(shù)為X,則P(X=2)=$\frac{15}{56}$,EX=$\frac{9}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)集合A={x||4x-1|<9,x∈R},B={x|$\frac{x}{x+3}$≥0,x∈R},則∁RA∩B=(  )
A.(-3-2]B.(-3-2]∪[0,$\frac{5}{2}$)C.(-∞,-3]∪[$\frac{5}{2}$,+∞)D.(-∞,-3)∪[$\frac{5}{2}$,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案