【題目】在合作學(xué)習(xí)小組的一次活動中,甲、乙、丙、丁、戊五位同學(xué)被隨機(jī)地分配承擔(dān),,,四項(xiàng)不同的任務(wù),每個(gè)同學(xué)只能承擔(dān)一項(xiàng)任務(wù).
(1)若每項(xiàng)任務(wù)至少安排一位同學(xué)承擔(dān),求甲、乙兩人不同時(shí)承擔(dān)同一項(xiàng)任務(wù)的概率;
(2)設(shè)這五位同學(xué)中承擔(dān)任務(wù)的人數(shù)為隨機(jī)變量,求的分布列及數(shù)學(xué)期望.
【答案】(1)(2)見解析
【解析】
(1)先算出每項(xiàng)任務(wù)至少安排一位同學(xué)承擔(dān),共有種安排方法,考慮甲、乙兩人同時(shí)承擔(dān)同一項(xiàng)任務(wù),共有種安排方法,用去雜法可求甲、乙兩人不同時(shí)承擔(dān)同一項(xiàng)任務(wù)的概率.
(2),利用二項(xiàng)分布可求的分布列及數(shù)學(xué)期望.
(1)設(shè)為“甲、乙兩人不同時(shí)承擔(dān)同一項(xiàng)任務(wù)的概率”,
;
(2)
每一位同學(xué)承擔(dān)任務(wù)的概率為,不承擔(dān)任務(wù)的概率為
,,
,,
,,
所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】菜市房管局為了了解該市市民2018年1月至2019年1月期間購買二手房情況,首先隨機(jī)抽樣其中200名購房者,并對其購房面積(單位:平方米,)進(jìn)行了一次調(diào)查統(tǒng)計(jì),制成了如圖1所示的頻率分布南方匿,接著調(diào)查了該市2018年1月﹣2019年1月期間當(dāng)月在售二手房均價(jià)(單位:萬元/平方米),制成了如圖2所示的散點(diǎn)圖(圖中月份代碼1﹣13分別對應(yīng)2018年1月至2019年1月).
(1)試估計(jì)該市市民的平均購房面積.
(2)現(xiàn)采用分層抽樣的方法從購房耐積位于的40位市民中隨機(jī)取4人,再從這4人中隨機(jī)抽取2人,求這2人的購房面積恰好有一人在的概率.
(3)根據(jù)散點(diǎn)圖選擇和兩個(gè)模型進(jìn)行擬合,經(jīng)過數(shù)據(jù)處理得到兩個(gè)回歸方程,分別為和,并得到一些統(tǒng)計(jì)量的值,如表所示:
| ||
請利用相關(guān)指數(shù)判斷哪個(gè)模型的擬合效果更好,并用擬合效果更好的模型預(yù)測2019年6月份的二手房購房均價(jià)(精確到
參考數(shù)據(jù):,,,,,,,.參考公式:相關(guān)指數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C:(a>b>0)經(jīng)過點(diǎn)(0,),點(diǎn)F是橢圓的右焦點(diǎn),點(diǎn)F到左頂點(diǎn)的距離和到右準(zhǔn)線的距離相等.過點(diǎn)F的直線交橢圓于M,N兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)MF=2FN時(shí),求直線的方程;
(3)若直線上存在點(diǎn)P滿足PM·PN=PF2,且點(diǎn)P在橢圓外,證明:點(diǎn)P在定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確命題的個(gè)數(shù)是( )
①對于命題,使得,則,均有;
②命題“已知x,,若,則或”是真命題;
③設(shè),是非零向量,則“”是“”的必要不充分條件;
④是直線與直線互相垂直的充要條件.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某隧道的剖面圖是由半圓及矩形組成,交通部門擬在隧道頂部安裝通風(fēng)設(shè)備(視作點(diǎn)),為了固定該設(shè)備,計(jì)劃除從隧道最高點(diǎn)處使用鋼管垂直向下吊裝以外,再在兩側(cè)自兩點(diǎn)分別使用鋼管支撐.已知道路寬,設(shè)備要求安裝在半圓內(nèi)部,所使用的鋼管總長度為.
(1)①設(shè),將表示為關(guān)于的函數(shù);
②設(shè),將表示為關(guān)于的函數(shù);
(2)請選用(1)中的一個(gè)函數(shù)關(guān)系式,說明如何設(shè)計(jì),所用的鋼管材料最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A,B分別為雙曲線 (a>0,b>0)的左、右頂點(diǎn),雙曲線的實(shí)軸長為4,焦點(diǎn)到漸近線的距離為.
(1)求雙曲線的方程;
(2)已知直線y=x-2與雙曲線的右支交于M,N兩點(diǎn),且在雙曲線的右支上存在點(diǎn)D,使,求t的值及點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),求證:對于,恒成立;
(3)若存在,使得當(dāng)時(shí),恒有成立,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若是的極值點(diǎn), 求函數(shù)的單調(diào)性;
(2)若時(shí),,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸,的交點(diǎn)為,夾角為,與軸、軸正向同向的單位向量分別是,.由平面向量基本定理,對于平面內(nèi)的任一向量,存在唯一的有序?qū)崝?shù)對,使得,我們把叫做點(diǎn)在斜坐標(biāo)系中的坐標(biāo)(以下各點(diǎn)的坐標(biāo)都指在斜坐標(biāo)系中的坐標(biāo)).
(1)若,為單位向量,且與的夾角為,求點(diǎn)的坐標(biāo);
(2)若,點(diǎn)的坐標(biāo)為,求向量與的夾角;
(3)若,求過點(diǎn)的直線的方程,使得原點(diǎn)到直線的距離最大.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com