已知過點(diǎn)P(1,2)的直線l,被雙曲線2x2-y2=2截得的弦AB長4
2
,求直線l的方程.
考點(diǎn):雙曲線的簡單性質(zhì)
專題:計(jì)算題,作圖題,圓錐曲線的定義、性質(zhì)與方程
分析:由題意作圖,設(shè)直線l的方程為y=k(x-1)+2,從而可得(2-k2)x2+(2k2-4k)x-k2+4k-6=0,從而可得m+n=-
2k2-4k
2-k2
,m•n=
-k2+4k-6
2-k2
;利用弦長公式可得2k4+2k3-11k2+2k+5=0,從而解得k=1,從而寫出直線的方程即可.
解答: 解:作圖如右圖,
設(shè)直線l的方程為y=k(x-1)+2,
與雙曲線方程2x2-y2=2聯(lián)立消y得,
(2-k2)x2+(2k2-4k)x-k2+4k-6=0,
設(shè)A(m,k(m-1)+2),B(n,k(n-1)+2);
故m+n=-
2k2-4k
2-k2
,m•n=
-k2+4k-6
2-k2
;
則由弦AB長4
2
可得,
1+k2
•|m-n|=4
2

即(1+k2)[(-
2k2-4k
2-k2
2-4
-k2+4k-6
2-k2
]=32,
化簡可得,2k4+2k3-11k2+2k+5=0,
解得,k=1;
故直線l的方程為y=x+1.
點(diǎn)評(píng):本題考查了圓錐曲線的應(yīng)用及運(yùn)算化簡能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有集合A={x|x2-[x]=2}和B={x||x|<2},求A∩B和A∪B(其中[x]表示不超過實(shí)數(shù)x之值的最大整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在海岸線EF一側(cè)有一休閑游樂場,游樂場的前一部分邊界為曲線段FGBC,該曲線段是函數(shù)y=Asin(ωx+ϕ)(A>0,ω>0,ϕ∈(0,π)),x∈[-4,0]的圖象,圖象的最高點(diǎn)為B(-1,2).邊界的中間部分為長1千米的直線段CD,且CD∥EF.游樂場的后一部分邊界是以O(shè)為圓心的一段圓弧
DE

(1)求曲線段FGBC的函數(shù)表達(dá)式;
(2)曲線段FGBC上的入口G距海岸線EF最近距離為1千米,現(xiàn)準(zhǔn)備從入口G修一條筆直的景觀路到O,求景觀路GO長;
(3)如圖,在扇形ODE區(qū)域內(nèi)建一個(gè)平行四邊形休閑區(qū)OMPQ,平行四邊形的一邊在海岸線EF上,一邊在半徑OD上,另外一個(gè)頂點(diǎn)P在圓弧
DE
上,且∠POE=θ,求平行四邊形休閑區(qū)OMPQ面積的最大值及此時(shí)θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
16
+
y2
9
=1中,以點(diǎn)M(-1,2)為中點(diǎn)的弦所在的直線斜率為( 。
A、
9
16
B、
9
32
C、
9
64
D、-
9
32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的定義域:y=
1
x2-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
;且拋物線y2=4
3
x的焦點(diǎn)恰好是橢圓C的一個(gè)焦點(diǎn).求過點(diǎn)D(0,3)作直線L與橢圓C交于A,B兩點(diǎn),點(diǎn)N滿足
ON
=
OA
+
OB
,O為原點(diǎn).求四邊形OANB面積的最大值,并求此時(shí)直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果a2+b2=
1
2
c2,那么直線ax+by-c=0與圓x2+y2=1的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2分別是橢圓
x2
4
+y2=1的左右焦點(diǎn),若P是第一象限內(nèi)該橢圓上的一點(diǎn),且向量
PF1
PF2
=-
5
4
,則點(diǎn),P的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,橢圓短軸的一個(gè)頂點(diǎn)B與兩個(gè)焦點(diǎn)F1,F(xiàn)2組成的△BF1F2的周長為4+2
2
,且∠BF1F2=45°,求這個(gè)橢圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案