已知函數(shù)
(1)證明:對(duì)于一切的實(shí)數(shù)x都有f(x)x;
(2)若函數(shù)存在兩個(gè)零點(diǎn),求a的取值范圍
(3)證明:
(1)構(gòu)造函數(shù),然后利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,再利用單調(diào)性證明,(2)
(3) 利用放縮法證明
解析試題分析:(1)令
則 2分
當(dāng)時(shí),,當(dāng)時(shí), 3分
故在單調(diào)遞減,上單調(diào)遞增
所以有,從而有對(duì)一切實(shí)數(shù)成立 4分
(2)由=0得, 5分
令h(x)= 6分
則,觀察得x=1時(shí)=0 7分
當(dāng)x>1時(shí)>0,當(dāng)0<x<1時(shí) <0,=h(1)=e+1 8分
又
函數(shù)存在兩個(gè)零點(diǎn),則a的取值范圍為 9分
(3) 由(1)知,令 …11分
= 13分
所以 14分
考點(diǎn):本題考查了導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):此類問題是在知識(shí)的交匯點(diǎn)處命題,將函數(shù)、導(dǎo)數(shù)、不等式、方程的知識(shí)融合在一起進(jìn)行考查,重點(diǎn)考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值等知識(shí)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,
(Ⅰ)若曲線與曲線相交,且在交點(diǎn)處有相同的切線,求的值及該切線的方程;
(Ⅱ)設(shè)函數(shù),當(dāng)存在最小值時(shí),求其最小值的解析式;
(Ⅲ)對(duì)(Ⅱ)中的,證明:當(dāng)時(shí), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)若曲線在點(diǎn)處的切線與直線垂直,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)于都有成立,試求的取值范圍;
(Ⅲ)記.當(dāng)時(shí),函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(I)求函數(shù)的單調(diào)區(qū)間;
(II)若函數(shù)上是減函數(shù),求實(shí)數(shù)的最小值;
(III)若,使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,函數(shù)的圖象與軸相交于點(diǎn),且該函數(shù)的最小正周期為.
(1)、求和的值;
(2)、已知點(diǎn),點(diǎn)是該函數(shù)圖象上一點(diǎn),
點(diǎn)是的中點(diǎn),當(dāng),時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)是定義在R上的奇函數(shù),并且當(dāng)x∈(0,+∞)時(shí),f(x)=2x.
(1)求f(log2)的值;
(2)求f(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對(duì)于區(qū)間上有意義的兩個(gè)函數(shù)如果有任意,均有則稱與在上是接近的,否則稱與在上是非接近的.現(xiàn)有兩個(gè)函數(shù)與給定區(qū)間, 討論與在給定區(qū)間上是否是接近的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中。
(1)當(dāng)a=1時(shí),求它的單調(diào)區(qū)間;
(2)當(dāng)時(shí),討論它的單調(diào)性;
(3)若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若時(shí),取得極值,求實(shí)數(shù)的值;
(2)求在上的最小值;
(3)若對(duì)任意,直線都不是曲線的切線,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com