【題目】已知函數(shù)-2為自然對數(shù)的底數(shù),).

(1)若曲線在點處的切線與曲線至多有一個公共點時,求的取值范圍;

(2)當(dāng)時,若函數(shù)有兩個零點,求的取值范圍.

【答案】(1);(2) .

【解析】

(1)求導(dǎo)函數(shù),確定曲線在點處的切線,聯(lián)立,利用根的判別式,即可得出結(jié)論;

(2),構(gòu)造新函數(shù),求導(dǎo)函數(shù),確定其單調(diào)性,可得最值,即可確定的取值范圍.

(1) ,所以切線斜率

,∴曲線在點(1,0)處的切線方程為

.

可知:

當(dāng)Δ=0時,即時,有一個公共點;

當(dāng)Δ<0時,即 時,沒有公共點.

所以所求的取值范圍為.

(2),由,得

,則.

當(dāng)x時,由,得.

所以上單調(diào)遞減,在[1,e]上單調(diào)遞增,

因此,由,

比較可知,所以,結(jié)合函數(shù)圖象可得,當(dāng) 時,

函數(shù) 有兩個零點.

故所求 的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,,的中點.

(1)證明:平面;

(2)若點在棱上,且,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知以為首項的數(shù)列滿足:

1)當(dāng)時,求數(shù)列的通項公式;

2)當(dāng),時,試用表示數(shù)列100項的和;

3)當(dāng)是正整數(shù)),,正整數(shù)時,判斷數(shù)列,,是否成等比數(shù)列?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為實數(shù).

1)當(dāng)時,求函數(shù)上的最大值和最小值;

2)求函數(shù)的單調(diào)區(qū)間;

3)若函數(shù)的導(dǎo)函數(shù)上有零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)當(dāng)時,求曲線在點處切線的方程;

(2)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在R 且周期為1的函數(shù),在區(qū)間上, 其中集合D=,則方程f(x)-lgx=0的解的個數(shù)是____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某快遞公司在某市的貨物轉(zhuǎn)運中心,擬引進(jìn)智能機器人分揀系統(tǒng),以提高分揀效率和降低物流成本,已知購買x臺機器人的總成本p(x)萬元.

(1)若使每臺機器人的平均成本最低,問應(yīng)買多少臺?

(2)現(xiàn)按(1)中的數(shù)量購買機器人,需要安排m人將郵件放在機器人上,機器人將郵件送達(dá)指定落袋格口完成分揀,經(jīng)實驗知,每臺機器人的日平均分揀量q(m) (單位:件),已知傳統(tǒng)人工分揀每人每日的平均分揀量為1200件,問引進(jìn)機器人后,日平均分揀量達(dá)最大值時,用人數(shù)量比引進(jìn)機器人前的用人數(shù)量最多可減少百分之幾?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在軸上,離心率為,且過點P

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知斜率為1的直線l過橢圓的右焦點F交橢圓于A.B兩點,求弦AB的長。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 fx)=(x1exax2

(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(2)若處取得極大值,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案