函數(shù)f(x)=lnx+2x-6的零點一定位于下列哪個區(qū)間( 。
分析:要求函數(shù)的零點所在的區(qū)間,根據(jù)所給的函數(shù)的解析式,把區(qū)間的端點代入函數(shù)的解析式進行驗算,得到函數(shù)的值同0進行比較,在判斷出區(qū)間兩個端點的乘積是否小于0,得到結(jié)果.
解答:解:∵函數(shù)f(x)=lnx+2x-6
f(1)=-4<0,
f(2)=ln2-4<0
f(3)=ln3>ln1=0,
∴f(2)f(3)<0,
∴函數(shù)的零點在(2,3)上,
故選B.
點評:本題考查函數(shù)的零點的判定定理,本題解題的關(guān)鍵是做出區(qū)間的兩個端點的函數(shù)值,本題是一個基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-
ax
;
(Ⅰ)當a>0時,判斷f(x)在定義域上的單調(diào)性;
(Ⅱ)求f(x)在[1,e]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

7、函數(shù)f(x)=lnx-2x+3零點的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在(0,+∞)上的三個函數(shù)f(x)=lnx,g(x)=x2-af(x),h(x)=x-a
x
且g(x)在x=1處取得極值.求a的值及函數(shù)h(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
lnx+kex
(k為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),曲線y=f(x) 在點(1,f(1))處的切線與x軸平行.
(Ⅰ)求k的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)g(x)=(x2+x)f′(x),其中f′(x)是f(x)的導函數(shù).證明:對任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-x
(1)求f(x)的單調(diào)區(qū)間;
(2)若不等式af(x)≥x-
1
2
x2在x∈(0,+∞)內(nèi)恒成立,求實數(shù)a的取值范圍;
(3)n∈N+,求證:
1
ln2
+
1
ln3
+…+
1
ln(n+1)
n
n+1

查看答案和解析>>

同步練習冊答案